5 research outputs found

    Diffusion of hydrophobin proteins in solution and interactions with a graphite surface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from <it>Trichoderma reesei</it>, in aqueous solution in the presence and absence of a graphite surface.</p> <p>Results</p> <p>In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein.</p> <p>Conclusions</p> <p>From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.</p

    Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives

    Get PDF
    The first catalytic method for diastereo- and enantioselective synthesis of allylic boronates bearing a Z-trisubstituted alkenyl fluoride is disclosed. Boryl substitution is performed with either a Z- or E-allyldifluoride and is catalyzed by bisphosphine/Cu complexes, affording products in up to 99 % yield with >98:2 Z/E selectivity and 99:1 enantiomeric ratio. A variety of subsequent modifications are feasible, and notable examples are diastereoselective additions to aldehydes/aldimines to access homoallylic alcohols/amines containing a fluorosubstituted stereogenic quaternary center
    corecore