4,411 research outputs found
Comparative performance of squeeze film air journal bearings made of aluminium and copper
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Copyright @ 2012 The Authors - The article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.Two tubular squeeze film journal bearings, made from Al 2024 T3 and Cu C101, were excited by driving the single-layer piezoelectric actuators at a 75-V AC with a 75-V DC offset. The input excitation frequencies were coincident with the 13th modal frequency, at 16.32 and 12.18 kHz for the respective Al and Cu bearings, in order to produce a ‘triangular’ modal shape. The paper also provided a CFX model, used to solve the Reynolds equation and the equation of motion, to explain the squeeze film effect of an oscillating plate with pressure end leakage. The dynamic characteristics of both bearings were studied in ANSYS and then validated by experiments with respect to their squeeze film thickness and load-carrying capacity. It was observed that whilst both bearings did levitate a load when excited at mode 13, the Al bearing showed a better floating performance than Cu bearing. This is due to the fact that the Al bearing had a higher modal frequency and a greater amplitude response than the Cu bearing.This article is made available through the Brunel Open Access Publishing Fund
A Bioeconomic Analysis of the Northwestern Hawaiian Islands Lobster Fishery
Several surplus production-based bioeconomic models are applied to the Northwestern Hawaiian Islands (NWHI) commercial lobster fishery. The model which best explains the biological dynamics of the fishery is a modification of the Fox model developed by the authors. Economic costs are applied within a number of conceptual frameworks to develop the first integrated bioeconomic model of the fishery. In another development, the opportunity cost of labor based on crew share at the open access equilibrium level of fishing effort is used instead of proxy wage levels. Given the costs incurred, the fishery appears to be self-regulating in terms of long-term fishing effort for maximum sustainable yield.biological production models, fisheries economics, fisheries management, spiny lobster, slipper lobster, Environmental Economics and Policy, Resource /Energy Economics and Policy,
Instanton and Superconductivity in Supersymmetric CP(N-1) Model
The two dimensional supersymmetric CP(N-1) model has a striking similarity to
the N=2 supersymmetric gauge theory in four dimensions. The BPS mass formula
and the curve of the marginal stability (CMS), which exist in the four
dimensional gauge theory, appears in this two dimensional CP(N-1) model. These
two quntities are derived by a one-dimensional n-vector spin model in the large
n limit for the N=2 case. This mapping is further investigated at the critical
point. An application of the study of the BPS mass formula is proposed to the
phenomena of the spin and charge separations in the Higgs phase.Comment: 6 page
Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement
We deposited Ge layers on (001) Si substrates by molecular beam epitaxy and used them to fabricate suspended membranes with high uniaxial tensile strain. We demonstrate a CMOS-compatible fabrication strategy to increase strain concentration and to eliminate the Ge buffer layer near the Ge/Si hetero-interface deposited at low temperature. This is achieved by a two-steps patterning and selective etching process. First, a bridge and neck shape is patterned in the Ge membrane, then the neck is thinned from both top and bottom sides. Uniaxial tensile strain values higher than 3% were measured by Raman scattering in a Ge membrane of 76 nm thickness. For the challenging thickness measurement on micrometer-size membranes suspended far away from the substrate a characterization method based on pump-and-probe reflectivity measurements was applied, using an asynchronous optical sampling technique.EC/FP7/628197/EU/Heat Propagation and Thermal Conductivity in Nanomaterials for Nanoscale Energy Management/HEATPRONAN
Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium
The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on
the basis of spatio-temporal pattern formation by local
contraction-oscillators. This biological system can be regarded as a
reaction-diffusion system which has spatial interaction by active flow of
protoplasmic sol in the cell. Paying attention to the physiological evidence
that the flow is determined by contraction pattern in the plasmodium, a
reaction-diffusion system having self-determined flow arises. Such a coupling
of reaction-diffusion-advection is a characteristic of the biological system,
and is expected to relate with control mechanism of amoeboid behaviours. Hence,
we have studied effects of the self-determined flow on pattern formation of
simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial
solution, the envelope dynamics follows the complex Ginzburg-Landau type
equation just after bifurcation occurs at finite wave number. The flow term
affects the nonlinear term of the equation through the critical wave number
squared. Contrary to this, wave number isn't explicitly effective with lack of
flow or constant flow. Thus, spatial size of pattern is especially important
for regulating pattern formation in the plasmodium. On the other hand, the flow
term is negligible in the vicinity of bifurcation at infinitely small wave
number, and therefore the pattern formation by simple reaction-diffusion will
also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
Structural and dynamical properties of liquid Si. An orbital-free molecular dynamics study
Several static and dynamic properties of liquid silicon near melting have
been determined from an orbital free {\em ab-initio} molecular dynamics
simulation. The calculated static structure is in good agreement with the
available X-ray and neutron diffraction data. The dynamical structure shows
collective density excitations with an associated dispersion relation which
closely follows recent experimental data. It is found that liquid silicon can
not sustain the propagation of shear waves which can be related to the power
spectrum of the velocity autocorrelation function. Accurate estimates have also
been obtained for several transport coefficients. The overall picture is that
the dynamic properties have many characteristics of the simple liquid metals
although some conspicuous differences have been found.Comment: 12 pages, 11 figure
- …
