17 research outputs found

    Genetic Classification of Uveal Melanoma

    Get PDF
    With the development of novel techniques for genetic analyses, the genetic basis of 1 uveal melanoma etiology has made a great progression. Next-generation sequencing led to the discovery of recurrent mutated genes such as BAP1, SF3B1 and EIF1AX. The aim of this thesis was to investigate whether compared to AJCC classification or GEP analysis, these genetic changes would provide a better prognostic tool to classify patients with UM in high-risk and low-risk groups

    Metastatic disease in polyploid uveal melanoma patients is associated with BAP1 mutations

    Get PDF
    PURPOSE. Most of the uvea melanoma (UM) display a near-diploid (normal, ~2N) karyotype with only a few chromosomal changes. In contrast to these simple aberrations 18% of the UM samples show a polyploid character (>2N) and this was associated with an unfavorable prognosis. This study attempts to gain insight in the prognostic value of polyploidy in UM. METHODS. In 202 patients the ploidy status of the UM was determined using cytogenetic analysis, fluorescence-in-situ-hybridization (FISH), multiplex ligation dependent probe amplification (MLPA), and/or single nucleotide polymorphism (SNP) array analysis. Immunohistochemistry was used to determine the BAP1 expression and mutation analyses of BAP1 (coding regions) and the mutation hotspots for the SF3B1, EIF1AX, GNAQ, and GNA11 genes was carried out using Sanger sequencing or whole-exome sequencing. RESULTS. Twenty-three patients had a polyploid UM karyotype (11.4%). Patients with a polyploid tumor had larger tumors (15.61 vs. 13.13 mm, P = 0.004), and more often loss of heterozygosity of chromosome 3 (P ¼ 0.003). No difference in occurrence of mutations between polyploid and diploid tumors was observed for BAP1, SF3B1, EIF1AX, GNAQ, and GNA11. Polyploidy did not affect survival (P = 0.143). BAP1 deficiency was the only significant independent prognostic predictor for patients with polyploid tumors, with a 16- fold increased hazard ratio (HR 15.90, P = 0.009). CONCLUSIONS. The prevalence of mutations in the UM related genes is not different in polyploid UM compared with diploid UM. Moreover, similar to patients with diploid UM, BAP1 mutation is the most significant prognostic predictor of metastasis in patients with polyploid UM

    Chromosomal rearrangements in uveal melanoma: Chromothripsis

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular malignancy in the Western world. Recurrent mutations in GNAQ, GNA11, CYSLTR2, PLCB4, BAP1, EIF1AX, and SF3B1 are described as well as non-random chromosomal aberrations. Chromothripsis is a rare event in which chromosomes are shattered and rearranged and has been reported in a variety of cancers including UM. SNP arrays of 249 UM from patients who underwent enucleation, biopsy or endoresection were reviewed for the presence of chromothripsis. Chromothripsis was defined as ten or more breakpoints per chromosome involved. Genetic analysis of GNAQ, GNA11, BAP1, SF3B1, and EIF1AX was conducted using Sanger and next-generation sequencing. In addition, immunohistochemistry for BAP1 was performed. Chromothripsis was detected in 7 out of 249 tumors and the affected chromosomes were chromosomes 3, 5, 6, 8, 12, and 13. The mean total of fragments per chromosome was 39.8 (range 12-116). In 1 UM, chromothripsis was present in 2 different chromosomes. GNAQ, GNA11 or CYSLTR2 mutations were present in 6 of these tumors and 5 tumors harbored a BAP1 mutation and/or lacked BAP1 protein expression by immunohistochemistry. Four of these tumors metastasized and for the fifth only short follow-up data are available. One of these metastatic tumors harbored an SF3B1 mutation. No EIF1AX mutations were detected in any of the tumors. To conclude, chromothripsis is a rare event in UM, occurring in 2.8% of samples and without significant association with mutations in any of the common UM driver genes

    Spliceosome mutations in uveal melanoma

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular malignancy of the eye. It has a high metastatic potential and mainly spreads to the liver. Genetics play a vital role in tumor classification and prognostication of UM metastatic disease. One of the driver genes mutated in metastasized UM is subunit 1 of splicing factor 3b (SF3B1), a component of the spliceosome complex. Recurrent mutations in components of the spliceosome complex are observed in UM and other malignancies, suggesting an important role in tumorigenesis. SF3B1 is the most common mutated spliceosome gene and in UM it is associated with late-onset metastasis. This review summarizes the genetic and epigenetic insights of spliceosome mutations in UM. They form a distinct subgroup of UM and have similarities with other spliceosome mutated malignancies

    Multi-Modality Analysis Improves Survival Prediction in Enucleated Uveal Melanoma Patients

    Get PDF
    PURPOSE. Uveal melanoma (UM) is characterized by multiple chromosomal rearrangements and recurrent mutated genes. The aim of this study was to investigate if copy number variations (CNV) alone and in combination with other genetic and clinico-histopathological variables can be used to stratify for disease-free survival (DFS) in enucleated patients with UM. METHODS. We analyzed single nucleotide polymorphisms (SNP) array data of primary tumors and other clinical variables of 214 UM patients from the Rotterdam Ocular Melanoma Study (ROMS) cohort. Nonweighted hierarchical clustering of SNP array data was used to identify molecular subclasses with distinct CNV patterns. The subclasses associate with mutational status of BAP1, SF3B1, or EIF1AX. Cox proportional hazard models were then used to study the predictive performance of SNP array cluster-, mutation-, and clinico-histopathological data, and their combination for study endpoint risk. RESULTS. Five clusters with distinct CNV patterns and concomitant mutations in BAP1, SF3B1, or EIF1AX were identified. The sample’s cluster allocation contributed significantly to mutational status of samples in predicting the incidence of metastasis during a median of 45.6 (interquartile range [IQR]: 24.7–81.8) months of follow-up (P < 0.05) and vice versa. Furthermore, incorporating all data sources in one model yielded a 0.797 C-score during 100 months of follow-up. CONCLUSIONS. UM has distinct CNV patterns that correspond to different mutated driver genes. Incorporating clinico-histopathological, cluster and mutation data in the analysis results in good performance for UM-related DFS prediction

    Radiological patterns of uveal melanoma liver metastases in correlation to genetic status

    Get PDF
    This study reports the role played by the mutation status of Uveal Melanoma (UM) in relation to hepatic metastatic patterns as seen on imaging modalities. Radiological images were obtained from 123 patients treated at the Erasmus Medical Center Rotterdam or the Rotterdam Eye Hospital. Radiological images were derived from either computed tomography or magnetic resonance imaging. Hepatic metastatic patterns were classified by counting the number of metastases found in the liver. Miliary metastatic pattern (innumerable small metastases in the entire liver) was analyzed separately. Mutation status was determined in 85 patients. Median disease‐free survival (DFS) and survival with metastases differed significantly between each of the metastatic patterns (respectively, p = 0.009, p < 0.001), both in favor of patients with less hepatic metastases. The mutation status of the primary tumor was not correlated with any hepatic tumor profiles (p = 0.296). Of the patients who had a solitary metastasis (n = 18), 11 originated from a primary BAP1‐ mutated tumors and one from a primary SF3B1‐ mutated tumor. Of the patients who had a miliary metastasis pattern (n = 24), 17 had a primary BAP1‐mutated tumor and two had a primary SF3B1‐ mutated tumor. Chromosome 8p loss was significantly more in patients with more metastases (p = 0.045). Moreover, the primary UMs of patients with miliary metastases harbored more chromosome 8p and 1p loss, compared to patients with single solitary metastasis (p = 0.035 and p = 0.026, respectively). In conclusion, our study shows that there is an inverse correlation of the number of metastasis with the DFS and metastasized survival, indicating separate growth patterns. We also revealed that the number and type of metastases is irrelevant to the prognostic mutation status of the tumor, showing that both BAP1‐ and SF3B1‐mutated UM can result in solitary and miliary metastases, indicating that other processes lay ground to the different metastatic patterns

    Radiological patterns of uveal melanoma liver metastases in correlation to genetic status

    No full text
    This study reports the role played by the mutation status of Uveal Melanoma (UM) in relation to hepatic metastatic patterns as seen on imaging modalities. Radiological images were obtained from 123 patients treated at the Erasmus Medical Center Rotterdam or the Rotterdam Eye Hospital. Radiological images were derived from either computed tomography or magnetic resonance imaging. Hepatic metastatic patterns were classified by counting the number of metastases found in the liver. Miliary metastatic pattern (innumerable small metastases in the entire liver) was analyzed separately. Mutation status was determined in 85 patients. Median disease‐free survival (DFS) and survival with metastases differed significantly between each of the metastatic patterns (respectively, p = 0.009, p &lt; 0.001), both in favor of patients with less hepatic metastases. The mutation status of the primary tumor was not correlated with any hepatic tumor profiles (p = 0.296). Of the patients who had a solitary metastasis (n = 18), 11 originated from a primary BAP1‐ mutated tumors and one from a primary SF3B1‐ mutated tumor. Of the patients who had a miliary metastasis pattern (n = 24), 17 had a primary BAP1‐mutated tumor and two had a primary SF3B1‐ mutated tumor. Chromosome 8p loss was significantly more in patients with more metastases (p = 0.045). Moreover, the primary UMs of patients with miliary metastases harbored more chromosome 8p and 1p loss, compared to patients with single solitary metastasis (p = 0.035 and p = 0.026, respectively). In conclusion, our study shows that there is an inverse correlation of the number of metastasis with the DFS and metastasized survival, indicating separate growth patterns. We also revealed that the number and type of metastases is irrelevant to the prognostic mutation status of the tumor, showing that both BAP1‐ and SF3B1‐mutated UM can result in solitary and miliary metastases, indicating that other processes lay ground to the different metastatic patterns.</p

    Multi-Modality Analysis Improves Survival Prediction in Enucleated Uveal Melanoma Patients

    No full text
    PURPOSE. Uveal melanoma (UM) is characterized by multiple chromosomal rearrangements and recurrent mutated genes. The aim of this study was to investigate if copy number variations (CNV) alone and in combination with other genetic and clinico-histopathological variables can be used to stratify for disease-free survival (DFS) in enucleated patients with UM.METHODS. We analyzed single nucleotide polymorphisms (SNP) array data of primary tumors and other clinical variables of 214 UM patients from the Rotterdam Ocular Melanoma Study (ROMS) cohort. Nonweighted hierarchical clustering of SNP array data was used to identify molecular subclasses with distinct CNV patterns. The subclasses associate with mutational status of BAP1, SF3B1, or EIF1AX. Cox proportional hazard models were then used to study the predictive performance of SNP array cluster-, mutation-, and clinico-histopathological data, and their combination for study endpoint risk.RESULTS. Five clusters with distinct CNV patterns and concomitant mutations in BAP1, SF3B1, or EIF1AX were identified. The sample's cluster allocation contributed significantly to mutational status of samples in predicting the incidence of metastasis during a median of 45.6 (interquartile range [IQR]: 24.7-81.8) months of follow-up (P < 0.05) and vice versa. Furthermore, incorporating all data sources in one model yielded a 0.797 C-score during 100 months of follow-up.CONCLUSIONS. UM has distinct CNV patterns that correspond to different mutated driver genes. Incorporating clinico-histopathological, cluster and mutation data in the analysis results in good performance for UM-related DFS prediction.MTG
    corecore