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PURPOSE. Uveal melanoma (UM) is characterized by multiple chromosomal rearrangements
and recurrent mutated genes. The aim of this study was to investigate if copy number
variations (CNV) alone and in combination with other genetic and clinico-histopathological
variables can be used to stratify for disease-free survival (DFS) in enucleated patients with UM.

METHODS. We analyzed single nucleotide polymorphisms (SNP) array data of primary tumors
and other clinical variables of 214 UM patients from the Rotterdam Ocular Melanoma Study
(ROMS) cohort. Nonweighted hierarchical clustering of SNP array data was used to identify
molecular subclasses with distinct CNV patterns. The subclasses associate with mutational
status of BAP1, SF3B1, or EIF1AX. Cox proportional hazard models were then used to study
the predictive performance of SNP array cluster-, mutation-, and clinico-histopathological
data, and their combination for study endpoint risk.

RESULTS. Five clusters with distinct CNV patterns and concomitant mutations in BAP1, SF3B1,

or EIF1AX were identified. The sample’s cluster allocation contributed significantly to
mutational status of samples in predicting the incidence of metastasis during a median of 45.6
(interquartile range [IQR]: 24.7–81.8) months of follow-up (P < 0.05) and vice versa.
Furthermore, incorporating all data sources in one model yielded a 0.797 C-score during 100
months of follow-up.

CONCLUSIONS. UM has distinct CNV patterns that correspond to different mutated driver genes.
Incorporating clinico-histopathological, cluster and mutation data in the analysis results in
good performance for UM-related DFS prediction.

Keywords: uveal melanoma, copy number variation, survival, unsupervised clustering, gene
mutation

Uveal melanoma (UM) is the most common primary
intraocular malignancy in adults, characterized by non-

random chromosomal aberrations and a small set of recurrent
mutations in the BAP1, SF3B1, and EIF1AX (BSE) genes.
Prognostication has been performed initially only using
clinico-histopathological parameters1 and has gradually be-
come more precise by using other genetic prognosticators,
such as single chromosome copy number variation (CNV)
status,2,3 gene expression profiling,4 and mutation status,5,6

and using them in different combinations.7–11 In this report,

we have used the 214 single nucleotide polymorphisms (SNP)-
array set of our previous published study12 and this dataset
was expanded with in part unpublished clinico-histopatho-
logic parameters and gene mutation data. In the 80 UM The
Cancer Genome Atlas (TCGA) landmark study,13 four main
molecular subtypes were identified using multiple genomic
data sources including CNV. In a recent study,14 658 UM fine-
needle aspiration biopsies (FNABs) were categorized based on
the TCGA classification and tumor clinical features and
outcome was analyzed. Our findings correlate well with the
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aforementioned study results; however, due to our longer
follow-up (up to 273 months in our cohort compared with
approximately 60 months in the other studies) we are able to
detect late-onset metastasis. In addition, using unsupervised
CNV clustering, we were able to identify an extra fifth cluster
of UM that shows a prolonged disease-free survival (DFS).
Furthermore, the predictive value of BSE status compared
with complete genomic CNV (interpreted as a cluster variable
from 1 to 5) status has not yet been evaluated before and
there is no literature that incorporates BSE mutation status
with CNV and clinico-histopathological data in a Cox
proportional hazard model. Therefore, we set out to
incorporate clinico-histopathologic, CNV, and BSE mutation
status variables that are known for their predictive value from
literature and evaluate whether the combination of these data
modalities yields improved accuracy for DFS prediction in our
UM cohort with a long follow-up spanning up to 273 months.

MATERIALS AND METHODS

Study Population

Patients were selected from the Rotterdam Ocular Melanoma
Study Group (ROMS) database, which contained 808 records
based on the availability of whole-genome SNP array analysis.
In total, 214 patients were included in SNP array analysis.
However, patients with iris melanoma (n¼ 3) and one patient
with iris melanocytoma (n ¼ 1) were excluded from Cox
proportional hazard analyses. We obtained tumor material from
two (n¼ 2) UM patients from other hospitals (Groningen UMC
and Nijmegen Radboud UMC) without clinical data, who were
also excluded. All patients underwent primary enucleation (n¼
212) or received a biopsy before radiation therapy (n ¼ 2)
between 1989 and 2015. An overview of patient and tumor
characteristics is provided in Table 1 and mutation status of the
analyzed UM is provided in Supplementary Table S1. Patients’
follow-up data were updated until August 2017. Informed
consent was obtained from all patients. This study was
approved by the local ethics committee and performed
according to the guidelines of the Declaration of Helsinki.

Histopathology

A histopathologic diagnosis of melanoma was confirmed by an
experienced ophthalmic pathologist (R.M.V.) conforming to
the Royal College of Pathologists guidelines (available at:
https://www.rcpath.org/profession/guidelines/cancer-datasets-
and-tissue-pathways.html). We used tumor thickness and
largest basal diameter measurements during histological
preparation. The T class of tumors (hereafter TNM) was
determined using the American Joint Committee on Cancer
eighth edition staging system.15 In short, hematoxylin and
eosin staining was used to differentiate between epithelioid or
spindle cells according to the modified Callender classification.
Epithelioid cells were defined as present when more than 10%
of tumor cells exhibited an epithelioid phenotype. Lympho-
cytic infiltration was defined as any obvious clusters of
lymphoid inflammatory cells in the tumor. The mitotic rate
was determined by counting the mitosis in 8 mm2 equal to 50
high power fields. Microfoci of necrosis were accepted as
positive. Extraocular extension was defined as tumor growth
through the sclera and beyond the outer scleral surface.
Extracellular matrix networks were visualized in tumor
specimens stained with periodic acid-Schiff staining without
hematoxylin staining and evaluated using a green filter, defined
as at least three back-to-back closed loops.

Immunohistochemistry (IHC) was performed with an
automated IHC staining system (Ventana BenchMark ULTRA;
Ventana Medical Systems, Tucson, AZ, USA) using the alkaline
phosphatase method and a red chromogen. In brief, following
deparaffinization and heat-induced antigen retrieval for 64
minutes, the tissue sections were incubated with a mouse
monoclonal antibody raised against amino acids 430 to 729 of
human BAP1 (clone sc-28383, 1:50 dilution; Santa Cruz
Biotechnology, Dallas, TX, USA) for 1 hour at 36.18C. A
subsequent amplification step was followed by incubation
with hematoxylin II counterstain for 8 minutes and then a
blue-coloring reagent for 8 minutes according to the
manufacturer’s instructions (Ventana). Liver, tonsil, breast
tissue, and the retinal pigment epithelium were used as
positive controls for BAP1 expression. Loss of expression was
defined as absent BAP1 expression in the tumor cell nucleus.
Only nuclear expression was scored because only nuclear
expression has proven to be of prognostic relevance in
UM.16–18

Mutational Status

After enucleation or biopsy, the tumor was divided in three
parts and snap-frozen in liquid nitrogen, formalin-fixed paraffin-
embedded (FFPE), or directly used for DNA extraction. High-
quality DNA was isolated from fresh tumor samples or from
liquid nitrogen–stored tumor samples using the QIAmp DNA-
mini kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions. Mutation analysis on FFPE material was of
sufficient quality to perform targeted sequencing using the Ion
Torrent Personal Genome Machine system (Life Technologies,
Carlsbad, CA, USA).

Mutation analyses of GNAQ, GNA11, BAP1, SF3B1, and
EIF1AX were performed using Sanger sequencing and
targeted sequencing on the Ion Torrent Personal Genome
Machine as described before.19 In 202 samples, BAP1 status
was analyzed using BAP1 IHC, and in 118 samples BAP1

mutation analysis (44 extra samples and the 74 samples
mentioned in the study of Koopmans et al.16). Sanger
sequencing was used for validation. In 12 cases in which
BAP1 IHC was positive and the BAP1 mutation was a
missense or in-frame deletion, we used a cutoff of >20 for
the combined annotation dependent depletion (CADD)20

scores in order to reassign BAP1 IHC-positive samples (i.e.,
wild-type samples) to the BAP1IHCneg/mut group in further
analyses. In 202 samples, we sequenced exon 14 of SF3B1 to
detect mutations in the R625 or K666 residues and in more
than 150 samples, SF3B1 exons 12 to 16 (including the K700)
were sequenced. EIF1AX exons 1 and 2 with flanking regions
up to 25 base pairs into the 5 0 untranslated region and intron
1 of EIF1AX (n¼200) were analyzed. We classified samples as
having no recurrent mutation (NRM) if they had positive
BAP1 immunostaining and had no mutations in BAP1, SF3B1,

or EIF1AX.

SNP Array Analyses

A total of 200 ng DNA input was used for whole-genome copy
number analyses by SNP arrays. In all samples (n¼ 214), more
than 90% of the SNPs were mapped, which were used for
further analyses. For the entire set, four types of Illumina
Human SNP array platforms were used: 18 UM were analyzed
using the CytoSNP-12 v2.0 BeadChip; 58 UM were analyzed
using the CytoSNP-12 v2.1; 46 UM were analyzed using
OmniExpress-12 v1, and 92 UM were analyzed using
CytoSNP-850K BeadChips (Bead Studio Illumina, San Diego,
CA, USA) (Supplementary Fig. S1). Nexus Copy Number 8.0
(BioDiscovery, Inc., El Segundo, CA, USA) was used to calculate
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the total percentage aneuploidy of the entire genome, the total
Copy Number (CN) events and for visualization of the whole-
genome SNP array data. For these calculations, CN events
smaller than 1 Mb were filtered out. Chromosomal aberrations
of the sex chromosomes also were left out of the analysis to
prevent gender-based bias. Cluster-wise comparisons were
performed using the Mann-Whitney-Wilcoxon test with Holms
correction for multiple testing. False discovery rate (FDR)
correction was used for multiple testing, which was called
significant when FDR �0.05 and P value �0.05 was called
significant for single test comparisons.21

Nonweighted Hierarchical Clustering

A new dataset was obtained by combining samples across the
four array comparative genomic hybridization (CGH) plat-
forms. The dataset includes measurements of 215,138 SNPs
that overlapped across the platforms on 214 samples
(Supplementary Fig. S1). To remove germline-specific aberra-
tions, tumor profiles in each platform underwent correction
using the data from 10 genomic DNA samples isolated from
blood of non-UM patients (R-package NoWaves version 0.6).22

Segmentation analysis was performed on the corrected data,
which subsequently was used to calculate the called data
using R-package CGHcall version 2.36.0.23 The segmented
and called data were combined to generate the regioned data,
which has far fewer features than the former two and equal
weights were applied for all regions. Finally, nonweighted
hierarchical clustering analysis was performed using the soft
calls (regioned call probability) data with symmetric Kullback-
Leibler divergence as distance measure and Ward Linkage.24

The analyses were performed using the dedicated R-package
WECCA version 0.40 on the regioned data.25 All analyses have
been performed using the R statistical environment, version
3.3.1.

Statistical Analysis

DFS was determined from the date of enucleation until the
date of metastasis or until last follow-up. Patients were
censored when they were lost to follow-up or when death
from a cause other than UM occurred. The Kaplan-Meier
method was applied to estimate the cumulative incidence of
the study endpoint during follow-up, whereas differences
between the patient groups were compared using the log-
rank test. Up to 5% of data were missing for 24 variables.
Taking this small percentage into account, we applied the
simple method of mean imputation to complete the dataset
for analysis. The relations between a broad range of clinico-
histopathological, SNP array cluster, and mutation data, and
the incidence of the study endpoint were evaluated by
univariable Cox proportional hazard (PH) regression analyses.
We report the corresponding unadjusted hazard ratios (HR)
and 95% confidence intervals (CI). Inspection of the Schoen-
field residuals showed no meaningful deviation of the PH
assumption for all models. Subsequently, multivariable Cox
PH models were fitted to study the predictive value of the
combined clinico-histopathological data, and the added value
of SNP array cluster and mutation data, which was evaluated
by likelihood ratio tests. All variables included in the
multivariable model reported in Table 2 were analyzed as
categorical data. We report C-indices (indicating discriminat-
ing performance) for all models, and a calibration curve for
the most extended model.

The R statistical software package (version 3.5.0) was used
for data analyses. Statistical significance was set at the 0.05
probability level.T
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RESULTS

Nonweighted Hierarchical Clustering Using SNP
Data

The heat map obtained after hierarchical cluster (HC) analysis
revealed five clusters, which are mainly driven by CNVs on
chromosomes 1, 3, 6, and 8 (Fig. 1A). In almost all cases,
chromosome 3 (disomy or monosomy) divides the three
clusters (A, B, C) on the left major clustering branch from
the right major clustering branch (D, E) (Supplementary Fig.
S2A).

The clusters A, B, and C in the left major clustering branch
of the HC tree are in general characterized by either a paucity
of CNVs or specific CNVs in chromosome 6 (Figs. 1A, 1C).
Samples in cluster A have no CNVs in chromosome 6q,
whereas cluster B was characterized by entire chromosome 6
gain and cluster C is composed of UM with chromosome 6p
gain and 6q loss in the tumor. Supplementary Fig. S2B and S2C
show high discriminatory values for chromosome 6q when
comparing clusters A versus B-C and clusters B versus C. The
CNVs in chromosome 6q were also able to discriminate
between cluster D and E (Fig. 1C, Supplementary Fig. S2D).

Clusters A (n¼ 58) and B (n¼ 11) contained samples with
only small CNVs or no CNVs at all. Typical for cluster A are
chromosome 6p (58%) and 8q (28%) gain. Cluster B contains
UM with gain of chromosome 6 (91%), 8p (36%), and 8q (45%)

(Fig. 1A, 1B). In contrast to the clusters A and B, cluster C
harbors UM tumors with multiple CNVs. Gains in chromo-
somes 6p (89%) and 8q (65%), and loss in chromosome 6q
(91%) are observed in most cases. Moreover, these CNVs are in
general larger than those in clusters A and B. Also, gain of the
proximal part of chromosome 11q and loss of the terminal end
of chromosome 11q are observed recurrently (26% and 43%,
respectively) (Fig. 1C).

The two clusters D (n ¼ 88) and E (n ¼ 34) of the right
major clustering branch have losses in chromosomes 1p (31%;
50%), 3 (91%; 88%), and 8p (27%; 23%), and gain of
chromosome 8q (78%; 88%) in common (Fig. 1C). Loss of 4q
(20%), 6q (76%) and gain of chromosomes 1q (29%), 4p (23%),
6p (35%), and 8p (20%) are characteristic of cluster E and the
entire right branch of cluster E consisted of UM cases with
polyploidy.

Next, aneuploidy and total CN events were calculated for
the two major clustering branches and for each cluster
separately. The median percentage of genomic aneuploidy in
the left major clustering branch was 5.2% (interquartile range
[IQR]: 1.0%–8.6%) compared with a median of 12.7% (IQR:
10.3%–18.9%) for the right major clustering branch. Also the
median number of CN events in the left major clustering
branch (seven events; IQR: 2.5–13.0) was significantly (P <<
0.001) lower compared with the CN event number of right
major clustering branch (12 events; IQR: 7.0–20.0) (Figs. 2A,
2B).

FIGURE 1. Nonweighted hierarchical clustering of regional CNV and distinct distribution of UM mutational status. (A) Heat map of the CNVs
constructed with unsupervised nonweighted hierarchical clustering. (B) Doughnut charts for every cluster showing the distribution of the BAP1,
SF3B1, and EIF1AX mutation status, including several variables. (C) Chromosomal patterns for the five clusters constructed by nonweighted
hierarchical clustering.
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FIGURE 2. Boxplots showing percentage aneuploidy and CN events. (A) Statistical comparison of the percentage of aneuploidy between samples
allocated in the left major clustering branch versus the right major clustering branch, and (B) statistical comparison of the total number of CN events
of samples in the left major clustering branch versus the right major clustering branch in the ROMS cohort. (C) The same analyses performed on
samples allocated in the clusters for percentage of aneuploidy and (D) total number of CN events. Mann-Whitney-Wilcoxon test was used to
compare groups with Holms correction for multiple testing. The continuous lines between the groups represent statistically significant differences
(P < 0.05) between the clusters. The dashed line depicts no significant difference between the clusters.
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Similar analyses were performed for the five clusters. The
samples in the cluster A have the lowest median of 1.6% (IQR:
0.1%–5.2%) aneuploidy of the genome consistent with findings
of Robertson et al.,13 whereas cluster E has the highest median
aneuploidy of 23.7% (IQR: 16.1%–30.4%) (Fig. 2C). The
absolute number of CN events was the lowest in cluster A
with a median of four changes per sample (IQR: 1.0–8.0
events), whereas a median of 22.5 (IQR: 11.0–48.0 events)
changes was observed in cluster E (Fig. 2D).

Association of the Clusters With Mutation Status

In cluster A we observed UM cases with SF3B1 mutations (n¼
13; SF3B1

mut), EIF1AX mutations (n¼ 18; EIF1AX
mut), SF3B1

and EIF1AX
mut UM samples (n ¼ 2), or no BSE mutation and

BAP1IHC positive (n¼18; NRM) (Supplementary Table S1). Six
UM samples in cluster A were BAP1 IHC negative or contained
a mutation in BAP1 (BAP1IHCneg/mut) (Fig. 1B). Cluster B
contained five EIF1AX

mut, one UM that is BAP1 IHC negative
and harbors an EIF1AX

mut and four NRM UM, respectively.
Cluster C predominantly harbors SF3B1

mut UM (n ¼ 16; 70%)
and in cluster D, BAP1IHCneg/mut samples were enriched (n ¼
67; 76%). Enrichment of BAP1IHCneg/mut (n ¼ 24; 71%) was
observed in cluster E. This distribution of mutational status
across clusters is consistent with the distribution of UM
samples found in the study of Robertson et al.13 except our
analysis revealed an additional cluster. The NRM samples (n¼
5; 15%) in cluster E were BAP1 IHC-positive polyploid UM
cases.

Association With Clinical and Tumor Data

Clinical and pathological data from 214 patients were revised
and updated. The cohort consists of 107 women (50%) and 107
men (50%) with a mean age at diagnosis of 62.6 years (95% CI:
60.7–64.5). These cluster-wise and branch-wise clinical data
are shown in Table 1. Mean age at diagnosis was higher in the
right major clustering branch compared with the left (64.6 vs.
59.9 years, P ¼ 0.016), respectively, whereas mean longest
tumor diameters (LTDs) of UM in the left major clustering
branch were smaller than LTD of UM in the right major
clustering branch (12.1 vs. 13.8 mm, P ¼ 0.001).

Cluster-wise Kaplan-Meier survival curves are shown in
Figure 3, and we used radiological-proven metastatic disease as
study endpoint. Samples in the cluster B, mostly EIF1AX

mut

and NRM, showed no events and have a median DFS of 72.2
(IQR: 55.9–175.0) months (Table 1).

The clusters A and C correspond to intermediate survival
(Cluster A: median DFS: 59.5 months, IQR: 43.7–111.9, Cluster
C: median DFS: 49.1 months, IQR: 33.4–106.8), whereas the
clusters D and E combined (right major clustering branch)
correspond to worst survival with a median DFS of 35.6 (IQR:
20.4–60.7) months (Table 1).

Prediction of DFS

Several factors in clinico-histopathological domain were
associated with an increased incidence of the metastatic
disease, including the presence of epithelioid cells, presence
of closed extracellular matrix patterns, TNM (stages 3 and 4),
longest tumor diameter, and lymphocytic infiltrate (Supple-
mentary Table S2). With respect to SNP array cluster data: the
incidence of the study endpoint was significantly higher in
patients allocated in cluster D (HR: 10.05) or E (HR: 9.15) as
compared with the reference cluster A. Finally, patients with a
BAP1IHCneg/mut tumor had a significantly increased risk (HR:
9.33) compared with those tumors that were BAP1 IHC-
positive or had no mutation in BAP1, whereas SF3B1 mutated

UM (HR: 0.48) patients and those UM with an EIF1AX

mutation (HR: 0.07) or wild-type UM (HR: 0.19) had
significantly reduced risk of the study endpoint.

The regression model that included clinico-histopathologi-
cal data yielded a C-index of only 0.728, indicating reasonable
discriminative performance (Table 2). LTD and lymphocytic
infiltrate lost significance in multivariate analysis and were not
included in the regression models. The clinico-histopatholog-
ical model was significantly improved by adding either SNP
array cluster data (C-index 0.775, P < 0.001) or mutation data
(C-index 0.794, P < 0.001). The SNP array cluster data model
only was significantly improved by adding mutation data (P <
0.001), this was also the case when mutation data was added to
the SNP array data model (P < 0.05). The model combining
data from all three domains showed good discrimination (C-
index 0.797), whereas the incidence of the study endpoint (at
100 months) was adequately predicted (Fig. 4).

DISCUSSION

In this study, we observed that dividing our UM cohort in five
clusters with distinct overall CNV patterns improved our
proportional Cox regression analysis model in comparison
with solely using clinico-pathological and/or mutation data.

The added value of distinct CNVs of chromosomes 1, 3, 6,
and 8 has been recognized and used before by other
researchers.8,10,26 However, using a cutoff of five clusters in
the HC and our relatively long follow-up we defined in contrary
to other studies, a sub cluster B in the disomy 3 UM with a
typical gain of entire chromosome 6 and a prolonged DFS.
After evaluation of the sample distribution in cluster B, we
observed whole chromosome 6 gain almost exclusively in
EIF1AX

mut tumors or UM without a recurrent mutation, except
for two UM in cluster E that displayed a polyploid genome.
Therefore, we suggest whole chromosome 6 gain without
polyploidy is predictive of EIF1AX-mutated tumors or UM
without a recurrent mutation.

We validated our CNV clustering data results with a recently
published study by Robertson et al.13 that performed CNV,
hierarchical clustering analysis on UM data provided by
TCGA.13 We observed major similarities in sample allocation
(i.e., chromosome 3 loss samples were allocated in cluster 3
and 4 just as UM in our study were allocated in clusters D and
E). Moreover, the clusters 3 and 4 contain nearly all BAP1 IHC
negative/mutated samples. When observing the differences in
survival between cluster 3 and 4 in the TCGA based on CNV
cluster 4 UM develop metastasis earlier than cluster 3 UM. We
also observed this phenomenon using a cutoff of 25 months (P
< 0.05) of follow-up in our set. Therefore, cluster 4 from the
TCGA is comparable to our cluster E, which is mainly
characterized by chromosome 3 loss and chromosome 6 loss
and 8q gain. The main difference between our cluster E and
cluster 4 of the TCGA study is cluster 4 of the TCGA study
consists of isochromosome 8q UM, which are distributed
throughout our clusters D and E. A feature of our clustering
algorithm on the other hand is the ability to detect polypoid
samples that are located in our cluster E. However, if we take
into account the follow-up of the TCGA cohort (60 months)
and our maximum follow-up (273 months), clusters D and E
from our set eventually show similar survival curves, suggest-
ing no prognostic value in subdividing monosomy 3 UM based
on CNV using follow-up longer than 273 months. Samples with
partial chromosome 6p gain, partial chromosome 6q loss, and
disomy, 3 CNV samples were combined in cluster 2 of the
TCGA UM, which is comparable to cluster C from our study
and contains most of the SF3B1-mutated UM. This cluster 2 UM
appears to have a favorable prognosis in the TCGA study.
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However, UM in cluster C eventually shows late-onset
metastasis with longer follow-up in our set. As an addition to
the TCGA analysis, our extra fifth cluster over the TCGA set is
cluster B, which is characterized by chromosome 6 gain, which
is probably detected due to our relatively large SNP array
sample size (n¼ 214) and these UMs show prolonged survival.

The unsupervised nonweighted hierarchical SNP array
clustering results corroborated our previous study12 whereby
we performed supervised clustering with the known muta-
tional status of UM and combined both SNP array and
cytogenetic data. Hence, whole chromosomal arm involvement
in clusters D and E is explained by isochromosome formation
in BAP1IHCneg/mut samples, whereas cluster C was enriched for
SF3B1-mutated samples with multiple distal and often smaller
chromosomal structural variations (Fig. 1A). These findings
were observed in both cytogenetic and in SNP array data.12

Also, in other malignancies, the association of BAP1 mutations

with entire chromosome arm CNVs are observed. For example,

in hepatocellular carcinoma (HCC) analyses performed by

TCGA Network, BAP1-mutated samples showed loss or gain of

entire chromosomal arms suggestive of isochromosomes in 14

of 23 BAP1-mutated HCC samples, implying a similar

underlying genetic mechanism.27

We observed that the clusters are indicative of the samples’

mutation status. BAP1IHCneg/mut UM mainly clustered based on

monosomy 3. UM with EIF1AX mutations or no detectable

recurrent mutations tightly clustered together by either a very

limited number of CNVs or the presence of chromosome 6

gain. SF3B1
mut UM cluster together based on recurring smaller

CNVs in chromosome 6p, 6q, and 8q. These analyses indicate

that the UM tumor cells, which are BAP1IHCneg/mut, SF3B1
mut,

or EIF1AX
mut, do have distinct CNV and chromosomal

patterns.

FIGURE 3. Survival curves of all patients included. Kaplan-Meier survival curves for each distinct CNV cluster of the ROMS with primary endpoint
DFS (P < 0.001). Multiple black line types were used: ‘‘two dash’’ is used for cluster A, ‘‘long dash’’ for cluster B, ‘‘solid’’ for cluster C, ‘‘dotted’’ for
cluster D, and ‘‘dot dash’’ for cluster E.
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We used predominantly BAP1 IHC to define the BAP1

mutation status. This should not make a major difference, as we
and others have shown a strong association between the loss of
nuclear BAP1 protein expression and the presence of BAP1

mutations.16,17 It might even be an advantage since BAP1

mutations are not always detected or evident from the
sequencing data.28 This could explain the fact that in the
TCGA13 SNP array dataset all BAP1 mutated samples determined
by sequencing were allocated in the chromosome 3 loss
clusters, whereas this was not the case for nine samples in
our set. Two of the nine BAP1IHCneg/mut UM patients died of
metastatic disease, both showing normal chromosome 3 status
on SNP array (DFS of 34 and 33.4 months). However, one
sample showed a small loss of heterozygosity of the BAP1 region
and the other showed 21% FISH count signal of one copy of
chromosome 3p, which was not consistent with SNP array
results, possibly due to tumor heterogeneity or contamination of
non-UM tissue in these particular cases. A third UM sample
harbored the classical monosomy 3 CNV, which occurred in
combination with gain of whole chromosome 6. In this
particular UM patient, gain or overexpression of genes located
on chromosome 6 such as the tumor suppressor genes PLAG1 or
LATS129 may counteract the loss of BAP1 protein, resulting in a
DFS of more than 266 months. None of the six other UM
BAP1IHCneg/mut patients with a DFS of 25.3, 43.9, 52, 67, 81, and
95 months, respectively, developed metastatic disease, suggest-
ing loss of BAP1 protein expression or mutation of one allelic
copy of BAP1 without concomitant loss of chromosome 3
appears not to correlate with increased metastatic risk.

Our proportional Cox regression analysis model including
clinico-pathological, cluster, and mutation data show signifi-
cantly higher C-scores compared with independent analysis
per data type. We also have shown there is additional
prognostic value combining CNV data with mutation status
data. This result implicates both SNP array and mutational
status data should be acquired to provide a more accurate
prognosis for UM patients when clinico-histopathological data
are not available. Furthermore, our full model yields a C-score
of 0.797, indicating a strong model and is comparable to the
study of Eleuteri et al.30 with a C-score of 0.79 and is higher
than the validation study of this method on a cohort at the
University of California San Francisco with a C-index of 0.67.31

However, by adding chromosome 8q CNV status in the model
of Eleuteri et al.,8 the group successfully managed to improve
the C-score to 0.861.

One limitation of our and the TCGA study is that only
tumors from enucleated eyes were used and therefore a bias
toward larger tumors is expected. However, Vichitvejpaisal et
al.14 published a study in which they applied the TCGA
classification on FNABs and were able to corroborate the TCGA
results in these, in general, smaller tumors.

Nevertheless, we do not expect our CNV clustering results
to be affected due to this size bias because chromosome 3 loss
was a major discriminatory variable and approximately 90% of
our BAP1IHCneg/mut UM were allocated in the right major
clustering branch. An overrepresentation of larger tumors
most likely has a reinforcing significant effect on Kaplan-Meier
curve due to high mortality in the right major clustering branch
samples compared with samples in the left major clustering
branch. In addition, our sample set of 214 is relatively small
compared with the Eleuteri et al.8 cohort (n¼4161). The small
sample size could be an explanation that the variable
‘‘extraocular extensions’’ is not significant in our Cox model.
However, the 4161 samples of Eleuteri et al.8 included genetic
data of 602 samples (i.e., chromosome 3 loss status and
chromosome 8q gain), which is only 3-fold higher than our
cohort, indicating we report a reasonable sample size.

In conclusion, we show that patients with UM can be divided
into molecular subclasses based on genetic CNV patterns, and
above all, these groups correspond very well to the BAP1,
SF3B1, and EIF1AX mutational status. Each group is character-
ized by recurring CNVs reflecting the different types of
chromosomal aberrations (e.g., whole chromosome arm loss
or gain as seen in the BAP1IHCneg/mut tumors versus the smaller
structural anomalies of chromosome 8 and 6 as seen in the
SF3B1

mut subtype), indicating that different pathways are
involved in the etiology of these UM subtypes and possibly also
progression toward metastatic disease. However, mutation
analysis or CNV detection using SNP arrays are not 100%
sensitive, and combining these resulted in additional prognostic
value in our proportional Cox regression analysis model. Last,
BAP1, SF3B1, and EIF1AX have diverse cellular functions, and
how exactly the changed proteins contribute toward tumori-
genesis is not clear. Thus, by studying each subgroup separately
and combining expression, protein, and epigenetic data, we will
be able to pinpoint the essential downstream targets for tumor
development in UM. Furthermore, because some of the driver
genes are also found in more common malignancies (e.g., SF3B1
mutations in breast cancer or leukemia), targeted therapeutic
options such as the use of spliceosome inhibitors might also be
applicable for SF3B1mut UM.
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