1,550 research outputs found

    Metabolism of brain glycolipid fatty acids

    Full text link
    The metabolism of the fatty acid moieties of brain cerebrosides, sulfatides, and gangliosides is reviewed and discussed. The methodology involved in the isolation of the fatty acids is described briefly. It seems clear now that most of these acids are made by chain elongation of intermediate length fatty acids by addition of acetate residues. The unsaturated acids are made by desaturation of the intermediate length acids (palmitic, heptadecanoic, stearic) followed by chain elongation. The hydroxy acids are made directly from the corresponding nonhydroxy acids, saturated, unsaturated, and odd‐numbered. All the hydroxy acids undergo oxidative decarboxylation to yield fatty acids containing one less carbon atom. The odd‐numbered acids are also made from propionate, which is elongated to intermediate length acids and then to longer acids. The major intermediate length “primer” acid seems to be palmitate, but there is evidence that the stearate used for cerebroside synthesis is also madede novo from acetate. The ganglioside fatty acids were found to turn over somewhat faster than the other fatty acids. Two metabolic pools for the cerebroside acids were found, one with a very high turnover rate, the other with a very low turnover rate.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141473/1/lipd0047.pd

    Study of Liquefaction Damages of Quay-Walls and Breakwaters During Kobe Earthquake

    Get PDF
    During Kobe Earthquake, very extensive damages of harbor facilities such as quay-wall and breakwater occurred in Kobe Port and also along the coastal areas between Kobe and Osaka cities. Major causes of the damages were the liquefaction of sands underlying and behind the concrete caisson and also strong earthquake shaking force on the caisson. The degree of damage varied considerably depending on location and also on the size of structure. In order to understand the mechanism of damage as well as the factors that controlled the degree of damage, it was necessary to examine and analyze the case records of damages of these structures. This paper describes the result of such study on liquefaction damage of quay-walls and breakwaters. Through the study, it was found that the movement of sand at shallow depth below the caisson base is mainly responsible for a large settlement of caisson, but the mode of deformation is different between quay wall and breakwater. Also an effective stress liquefaction analysis was performed on the damaged quay-walls and breakwaters in order to check the applicability of effective stress liquefaction analysis on damage assessment. It was found that the effective stress analysis may be used to establish the overall trend of damage variation with the intensity of seismic motion, but problems exist in setting the dynamic parameters for the analysis, such as damping parameters, in order to obtain a reliable result

    Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud

    Full text link
    Large-scale star formation in disk galaxies is hypothesized to be driven by global gravitational instability. The observed gas surface density is commonly used to compute the strength of gravitational instability, but according to this criterion star formation often appears to occur in gravitationally stable regions. One possible reason is that the stellar contribution to the instability has been neglected. We have examined the gravitational instability of the Large Magellanic Cloud (LMC) considering the gas alone, and considering the combination of collisional gas and collisionless stars. We compare the gravitationally unstable regions with the on-going star formation revealed by Spitzer observations of young stellar objects. Although only 62% of the massive young stellar object candidates are in regions where the gas alone is unstable, some 85% lie in regions unstable due to the combination of gas and stars. The combined stability analysis better describes where star formation occurs. In agreement with other observations and numerical models, a small fraction of the star formation occurs in regions with gravitational stability parameter Q > 1. We further measure the dependence of the star formation timescale on the strength of gravitational instability, and quantitatively compare it to the exponential dependence expected from numerical simulations.Comment: Accepted for publication in ApJ, 10 pages, 5 figure

    Third quantization of f(R)f(R)-type gravity

    Full text link
    We examine the third quantization of f(R)f(R)-type gravity, based on its effective Lagrangian in the case of a flat Friedmann-Lemaitre-Robertson-Walker metric. Starting from the effective Lagrangian, we execute a suitable change of variable and the second quantization, and we obtain the Wheeler-DeWitt equation. The third quantization of this theory is considered. And the uncertainty relation of the universe is investigated in the example of f(R)f(R)-type gravity, where f(R)=R2f(R)=R^2. It is shown, when the time is late namely the scale factor of the universe is large, the spacetime does not contradict to become classical, and, when the time is early namely the scale factor of the universe is small, the quantum effects are dominating.Comment: 9 pages, Arbitrary constants in (4.19) are changed to arbitrary functions of φ\varphi. Conclusions are not changed. References are added. Typos are correcte

    Thyroid Hormone Signalling Genes Are Regulated by Photoperiod in the Hypothalamus of F344 Rats

    Get PDF
    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHÎČ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated

    Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome.

    Get PDF
    The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To circumvent perinatal lethality, we have developed a novel method to integrate human SPINK1 gene on the X chromosome using Cre-loxP technology and thus generated transgenic mice termed "X-SPINK1". Consistent with the fact that one of the two X chromosomes is randomly inactivated, X-SPINK1 mice exhibit mosaic pattern of SPINK1 expression. Crossing of X-SPINK1 mice with Spink3+/- mice rescued perinatal lethality, but the resulting Spink3-/-;XXSPINK1 mice developed spontaneous pancreatitis characterized by chronic inflammation and fibrosis. The results show that mice lacking a gene essential for cell survival can be rescued by expressing this gene on the X chromosome. The Spink3-/-;XXSPINK1 mice, in which this method has been applied to partially restore SPINK1 function, present a novel genetic model of chronic pancreatitis

    Fast-Ion-Diagnostics for CHS Experiment

    Get PDF
    Fast-ion-diagnostics have played an important role in investigating issues related to fast ion orbits and fast-ion-driven MHD instabilities in CHS experiments. The fast-ion diagnostics employed in CHS are reviewed and experimentally obtained knowledge is summarized
    • 

    corecore