943 research outputs found
Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)
In this paper, we formulate the geometric Bogomolov conjecture for abelian
varieties, and give some partial answers to it. In fact, we insist in a main
theorem that under some degeneracy condition, a closed subvariety of an abelian
variety does not have a dense subset of small points if it is a non-special
subvariety. The key of the proof is the study of the minimal dimension of the
components of a canonical measure on the tropicalization of the closed
subvariety. Then we can apply the tropical version of equidistribution theory
due to Gubler. This article includes an appendix by Walter Gubler. He shows
that the minimal dimension of the components of a canonical measure is equal to
the dimension of the abelian part of the subvariety. We can apply this result
to make a further contribution to the geometric Bogomolov conjecture.Comment: 30 page
Sol-Gel Synthesis of 5 V LiCuxMn2−xO4 as a Cathode Material for Lithium Rechargeable Batteries
Spinel LiCuxMn2−xO4 0.025 x 0.1 has been synthesized using oxalic acid as the chelating agent using a sol-gel method to
obtain submicrometer-sized particles, good surface morphology, homogeneity, agglomeration, and high crystallinity involving
short heating time. X-ray diffraction XRD, scanning electron microscopy SEM, Fourier transform infrared spectroscopy, and
thermogravimetric and differential thermal analysis were carried out for the physical characterization of the synthesized powder.
The XRD patterns of LiCuxMn2−xO4 show the single-phase spinel product, which is in good agreement with the JCPDS card
35-782. SEM images show that the particles, on the average, are of 50 nm in size and are present as agglomerated clusters at all
dopant levels. Electrochemical cycling studies of the compound were carried out between 3 and 5 V to understand the redox
behavior of Cu2+ ions. The charge–discharge cycling studies of spinel material with Cu stoichiometry of x = 0.1 calcined at 850°C
exhibit an initial discharge capacity of 130 mAh g−1 and stabilized at 120 mAh g−1
Arginase from kiwifruit: properties and seasonal variation
The in vitro activity of arginase (EC 3.5.3.1) was investigated in youngest-mature leaves and roots (1-3 mm diameter) of kiwifruit vines (Actinidia deliciosa var. deliciosa) during an annual growth cycle, and enzyme from root material partially purified. No seasonal trend in the specific activity of arginase was observed in roots. Measurements in leaves, however, rose gradually during early growth and plateaued c. 17 weeks after budbreak. Changes in arginase activity were not correlated with changes in the concentration of arginine (substrate) or glutamine (likely end-product of arginine catabolism) in either tissue during the growth cycle. Purification was by (NH4)2SO4 precipitation and DEAE-cellulose chromatography. The kinetic properties of the enzyme, purified 60-fold over that in crude extracts, indicated a pH optimum of 8.8, and a Km (L-arginine) of 7.85 mM. Partially-purified enzyme was deactivated by dialysis against EDTA, and reactivated in the presence of Mn²⁺, Co²⁺, and Ni²⁺
Fuel-cell performance of multiply-crosslinked polymer electrolyte membranes prepared by two-step radiation technique
A multiply-crosslinked polymer electrolyte membrane was
prepared by the radiation-induced co-grafting of styrene and a
bis(vinyl phenyl)ethane (BVPE) crosslinker into a
radiation-crosslinked polytetrafluoroethylene (cPTFE) film. We
then investigated its H2/O2 fuel-cell performance at 60 and 80ºC in
terms of the effect of radiation and chemical crosslinking. At 60ºC,
all the membranes initially exhibited similar performance, but only
the cPTFE-based membranes were durable at 80ºC, indicating the
necessity of radiation crosslinking in the PTFE main chains.
Importantly, cell performance of the multiply-crosslinked
membrane was found high enough to reach that of a Nafion112
membrane. This is probably because the BVPE crosslinks in the
graft component improved the membrane-electrode interface in
addition to membrane durability. After severe OCV hold tests at 80
and 95ºC, the performance deteriorated, while no significant
change was observed in ohmic resistivity. Accordingly, our
membranes seemed so chemically stable that an influence on
overall performance loss could be negligible
Phonon-phonon interactions and phonon damping in carbon nanotubes
We formulate and study the effective low-energy quantum theory of interacting
long-wavelength acoustic phonons in carbon nanotubes within the framework of
continuum elasticity theory. A general and analytical derivation of all three-
and four-phonon processes is provided, and the relevant coupling constants are
determined in terms of few elastic coefficients. Due to the low dimensionality
and the parabolic dispersion, the finite-temperature density of noninteracting
flexural phonons diverges, and a nonperturbative approach to their interactions
is necessary. Within a mean-field description, we find that a dynamical gap
opens. In practice, this gap is thermally smeared, but still has important
consequences. Using our theory, we compute the decay rates of acoustic phonons
due to phonon-phonon and electron-phonon interactions, implying upper bounds
for their quality factor.Comment: 15 pages, 2 figures, published versio
Peierls Mechanism of the Metal-Insulator Transition in Ferromagnetic Hollandite K2Cr8O16
Synchrotron X-ray diffraction experiment shows that the metal-insulator
transition occurring in a ferromagnetic state of a hollandite
KCrO is accompanied by a structural distortion from the
tetragonal to monoclinic phase with a
supercell. Detailed electronic structure
calculations demonstrate that the metal-insulator transition is caused by a
Peierls instability in the quasi-one-dimensional column structure made of four
coupled Cr-O chains running in the -direction, leading to the formation of
tetramers of Cr ions below the transition temperature. This furnishes a rare
example of the Peierls transition of fully spin-polarized electron systems.Comment: Phys. Rev. Lett., in press, 5 pages, 3 figure
Properties of Ridges in Elastic Membranes
When a thin elastic sheet is confined to a region much smaller than its size
the morphology of the resulting crumpled membrane is a network of straight
ridges or folds that meet at sharp vertices. A virial theorem predicts the
ratio of the total bending and stretching energies of a ridge. Small strains
and curvatures persist far away from the ridge. We discuss several kinds of
perturbations that distinguish a ridge in a crumpled sheet from an isolated
ridge studied earlier (A. E. Lobkovsky, Phys. Rev. E. 53 3750 (1996)). Linear
response as well as buckling properties are investigated. We find that quite
generally, the energy of a ridge can change by no more than a finite fraction
before it buckles.Comment: 13 pages, RevTeX, acknowledgement adde
Valence band excitations in V_2O_5
We present a joint theoretical and experimental investigation of the
electronic and optical properties of vanadium pentoxide. Electron energy-loss
spectroscopy in transmission was employed to measure the momentum-dependent
loss function. This in turn was used to derive the optical conductivity, which
is compared to the results of band structure calculations. A good qualitative
and quantitative agreement between the theoretical and the experimental optical
conductivity was observed. The experimentally observed anisotropy of the
optical properties of V_2O_5 could be understood in the light of an analysis of
the theoretical data involving the decomposition of the calculated optical
conductivity into contributions from transitions into selected energy regions
of the conduction band. In addition, based upon a tight binding fit to the band
structure, values are given for the effective V3d_xy-O2p hopping terms and are
compared to the corresponding values for alpha'-NaV_2O_5.Comment: 6 pages (revtex),6 figures (jpg
Biaxial magnetic alignment in twinned REBa[2]Cu[3]O[y]superconductors
Biaxial magnetic alignment of REBa[2]Cu[3]O[y] (RE123, RE = Y, Nd, Sm, Dy, and Er) superconductor powders containing twin microstructures was demonstrated. Appropriate choice of RE effectively improved the degrees of in-plane and c-axis orientation in RE123 powder samples aligned under modulated rotating magnetic fields at room temperature. From the relationship between the magnetic field strength and the degrees of orientation, it is concluded that heavy RE ions induced the improvement of the in-plane magnetic anisotropies in RE123 grains with twin microstructures
- …