110 research outputs found

    Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals

    Get PDF
    The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs’ endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts

    Biologische Effekte von auf schwarzem Phosphor basierenden Nanomaterialien auf Zellen und Tiere

    Get PDF
    Die bedeutenden Fortschritte bei der Anwendung von auf schwarzem Phosphor basierenden Nanomaterialien (SPNMs) sind auf deren hervorragende Eigenschaften zurückzuführen. Aufgrund der vielfältigen Anwendungsmöglichkeiten dieser Materialien sind die Freisetzung in die Umwelt und eine anschließende Exposition des Menschen praktisch unvermeidlich. Daher muss untersucht werden, wie sich SPNMs auf biologische Systeme und die menschliche Gesundheit auswirken. In dieser umfassenden Übersicht werden die neuesten Erkenntnisse in Bezug auf Wirkungsweise, Mechanismen und Regulierungsfaktoren der endogenen Toxizität von SPNMs in Säugetieren vorgestellt. Diese Ergebnisse bilden die Grundlage für das Verständnis der biologischen Auswirkungen und haben das Ziel, Regulierungsprinzipien zur Minimierung gesundheitsschädlicher Auswirkungen festzulegen

    Conductive cotton prepared by polyaniline in situ polymerization using laccase

    Get PDF
    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV–vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.This work was financially supported by the National Natural Science Foundation of China (21274055, 51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), the Natural Science Foundation of Jiangsu Province (BK2011157), the Fundamental Research Funds for the Central Universities (JUSRP51312B), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135)

    Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming

    Get PDF
    Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15–20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells

    Crystal structure of NaLuW2O8∙2H2O and down/upconversion luminescence of the derived NaLu(WO4)2:Yb/Ln phosphors (Ln=Ho, Er, Tm)

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала
    corecore