2,671 research outputs found

    Plastic flow at the theoretical yield stress in ceramic films

    Get PDF
    Using fine-grained ceramic films based on chromium nitride, and suppressing fracture by using microcompression, it is shown that plastic flow at the theoretical yield stress can be obtained in brittle materials, with shear yield stresses of ~ G/24 at room temperature, which extrapolate to ~ G/19 at 0 K. Surprisingly, it is also found that the rate of deformation, and hence the hardness and the yield stress, are determined not by the soft, glassy grain boundary phase in the fine-grained materials, but by the harder crystal phase.This research was funded by A*STAR, Singapore and the Engineering and Physical Sciences Research Council (EPSRC) and Rolls-Royce Strategic Partnership (EP/H500375/1)

    Formation and migration of vacancy defects in GeSe and SnSe

    Get PDF
    The GeSe and SnSe have great potential in nuclear detector devices. Under irradiation, the formation and migration of point defects may affect their properties and performance significantly. In this study, a comparative study of vacancy formation and migration in GeSe and SnSe has been carried out by a first-principles method. It is shown that in both compounds the cation vacancies are generally much easier to form than anion vacancies, and the cation vacancies are generally easier to migrate than anion vacancies. For both Ge vacancy and Sn vacancy, the migration is anisotropic and the [322] direction is the most favorable migration pathway. The migration energy barrier are 0.54 eV for Ge vacancy and 0.46–0.52 eV for Sn vacancy, suggesting that vacancy clusters are relatively easy to form in both compounds, which may influence the application of GeSe and SnSe in nuclear detector devices

    Sustainable enzymatic technologies in waste animal fat and protein management.

    Full text link
    Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively

    White hard clam (Meretrix lyrata) shells media to improve phosphorus removal in lab-scale horizontal sub-surface flow constructed wetlands: Performance, removal pathways, and lifespan.

    Full text link
    This work examined the phosphorus (P) removal from the synthetic pretreated swine wastewater using lab-scale horizontal sub-surface flow constructed wetlands (HSSF-CWs). White hard clam (Meretrix lyrata) shells (WHC) and Paspalum atratum were utilized as substrate and plant, respectively. The focus was placed on treatment performance, removal mechanisms and lifespan of the HSSF-CWs. Results indicated that WHC-based HSSF-CW with P. atratum exhibited a high P removal (89.9%). The mean P efluent concentration and P removal rate were 1.34 ± 0.95 mg/L and 0.32 ± 0.03 g/m2/d, respectively. The mass balance study showed that media sorption was the dominant P removal pathway (77.5%), followed by microbial assimilation (14.5%), plant uptake (5.4%), and other processes (2.6%). It was estimated the WHC-based bed could work effectively for approximately 2.84 years. This WHC-based HSSF-CWs technology will therefore pave the way for recycling Ca-rich waste materials as media in HSSF-CWs to enhance P-rich wastewater purification

    AlN/CrN multilayer structures with increased thermal stability

    Get PDF
    CrAlYN nanolayered coatings of greatly enhanced thermal stability have been developed by doping with levels of Y up to 9 at.%. This prevented the complete dissolution of the layered structure after annealing at 1100 °C in Ar for 1 h, commonly observed in coatings with little or no Y content, although the bilayer period increased from ~ 5 nm to ~ 10 nm. The improved thermal stability is attributed to the formation of a continuous YN layer between the CrN and AlN layers, reducing the rate of interdiffusion

    Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

    Get PDF
    The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
    corecore