82 research outputs found

    Optimization of a solar air heater with phase change materials: Experimental and ‎numerical study

    Get PDF
    In this paper, a solar air heater (SAH) with phase change material (PCM)-based energy storage is ‎investigated. Paraffin was placed underneath the absorber plate as the PCM. A transient two-‎dimensional laminar model was used in the Ansys Fluent 17 software to study the effects of different ‎parameters on the performance of the SAH, such as the air mass flow rate, the amount of paraffin, and ‎the thermal conductivity of the paraffin. The performance of the SAH was optimized by considering ‎two objectives simultaneously: thermal energy efficiency and maximum nocturnal temperature ‎difference between the inlet and the outlet of the SAH. To validate the numerical model, a SAH with ‎a 2-cm paraffin layer and the same dimensions as the numerical model was built and tested. The ‎results of the simulation showed good agreement with the experimental results.

    Effect of the Use of Natural Gas-Diesel Fuel Mixture on Performance, Emissions and Combustion Characteristics of a Compression-Ignition Engine

    Get PDF
    A compression ignition engine with a mechanical fuel system was converted into common rail fuel system by means of a self-developed electronic control unit. The engine was modified to be operated with mixtures of diesel and natural gas fuels in dual-fuel mode. Then, diesel fuel was injected into the cylinder while natural gas was injected into intake manifold with both injectors controlled with the electronic control unit. Energy content of the sprayed gas fuel was varied in the amounts of 0% (only diesel fuel), 15%, 40%, and 75% of total fuel’s energy content. All tests were carried out at constant engine speed of 1500 r/min at full load. In addition to the experiments, the engine was modeled with a one-dimensional commercial software. The experimental and numerical results were compared and found to be in reasonable agreement with each other. Both NO x and soot emissions were dropped with 15% and 40%, respectively, energy content rates in gas–fuel mixture compared to only diesel fuel. However, an increase was observed in carbon monoxide emissions with 15% natural gas fuel addition compared to only diesel fuel. Although smoke emission was reduced with natural gas fuel addition, there was a dramatic increase in NO x emissions with 75% natural gas fuel addition

    A Nonlinear Constitutive Theory for Deviatoric Cauchy Stress Tensor for Incrompressible Viscous Fluids

    Get PDF
    Newton’s law of visocosity is a commonly used constitutive theory for deviatoric Cauchy stress tensor. In this constitutive theory originally constructed based on experimental observation, the deviatoric Cauchy stress is proportional to the symmetric part of the velocity gradient tensor. The constant of proportionality is the viscosity of the fluid. For all continuous media if the deforming matter is in thermodynamic equilibrium then all constitutive theories including those considered here must satisfy conservation and balance laws. It is well known that only the second law of thermodynamics provides possible conditions or mechanisms for deriving constitutive theories. The constitutive theory for deviatoric stress tensor used here can be shown to be a simplified form of the constitutive theory derived using conditions resulting from the entropy inequality in conjunction with the theory of generators and invariants that contains up to fifth degree terms in the components of the symmetric part of the velocity gradient tensor. In general the constitutive theory for deviatoric stress tensor is basis (covariant, contravariant, or Jaumann) dependent as it uses convected time derivatives of the Green and Almansi strain tensors of orders higher than one. However, the first convected time derivative of the Green and Almansi strain tensors are in fact symmetric part of the velocity gradient tensor which is basis independent. Thus, if the constitutive theory for deviatoric Cauchy stress tensor is only dependent on the symmetric part of the velocity gradient tensor, then it is basis independent. This is the case for the theory presented in this paper. In this paper we limit the constitutive theory for deviatoric Cauchy stress tensor to contain only up to quadratic terms in the components of the symmetric part of the velocity gradient tensor. The objective is to study the resulting flow physics due to the constitutive theory for deviatoric Cauchy stress tensor that contains up to quadratic terms in the velocity gradient tensor. Model problems consisting of fully developed flow between parallel plates, square lid-driven cavity, and asymmetric sudden expansion are used to present numerical solutions. Numerical solutions of the model problems are calculated using least squares finite element formulation based on residual functional in which the local approximations are considered in higher order scalar product spaces that permit higher order global differentiability solutions. Nonlinear system of algebraic equations are solved using Newton’s linear method with line search

    Measurement of Similarity in Academic Contexts

    Get PDF
    We propose some reflections, comments and suggestions about the measurement of similar and matched content in scientific papers and documents, and the need to develop appropriate tools and standards for an ethically fair and equitable treatment of authors

    Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped with a Heat Exchanger

    Get PDF
    In this paper, the performance of a solar still equipped with a heat exchanger using nanofluids has been studied both experimentally and theoretically through three key parameters, i.e., freshwater yield, energy efficiency and exergy efficiency. First, experiments are performed on a set-up, which is mainly composed of two flat plate solar collectors connected in series, and a solar still equipped with a heat exchanger. After heated in the collectors, the nanofluid enters the heat exchanger installed in the solar still basin to exchange heat with brackish water. The research question is to know how much the effect of nanofluids on the evaporation rate inside the solar desalination system is. The experiments are conducted for different nanoparticle volume fractions, two sizes of nanoparticles (7 and 40 nm), two depths of water in the solar still basin (4 and 8 cm), and three mass flow rates of nanofluids during various weather conditions. It is found that the weather conditions (mainly the sun radiation intensity) have a dominant influence on the solar still performance. To discover the effects of nanofluids, a mathematical model is developed and validated by experimental data at given weather conditions. The results reveal that using the heat exchanger at temperatures lower than 60 oC is not advantageous and the corresponding yield is smaller than that of solar still without the heat exchanger; although in such a case, using nanofluids as the working fluid in the heat exchanger can enhance the performance indices about 10%. At higher temperatures (e.g. 70 oC), the use of heat exchanger is beneficial; however, using nanofluids instead of water can augment the performance indices marginally i.e. just around 1%. In addition, it is found that in high temperatures using SiO2/water nanofluids, which have a lower effective thermal conductivity than that of Cu/water nanofluids, provides higher performance indices

    Nano-engineered pathways for advanced thermal energy storage systems

    Get PDF
    Nearly half of the global energy consumption goes toward the heating and cooling of buildings and processes. This quantity could be considerably reduced through the addition of advanced thermal energy storage systems. One emerging pathway for thermal energy storage is through nano-engineered phase change materials, which have very high energy densities and enable several degrees of design freedom in selecting their composition and morphology. Although the literature has indicated that these advanced materials provide a clear thermodynamic boost for thermal energy storage, they are subject to much more complex multiscale governing phenomena (e.g., non-uniform temperatures across the medium). This review highlights the most promising configurations that have been proposed for improved heat transfer along with the critical future needs in this field. We conclude that significant effort is still required to move up the technological readiness scale and to create commercially viable novel nano-engineered phase change systems
    • …
    corecore