163 research outputs found

    High Speed Dynamics of Collapsing Cylindrical Dust Fluid

    Full text link
    We construct approximate solutions that will describe the last stage of cylindrically symmetric gravitational collapse of dust fluid. Just before the spacetime singularity formation, the speed of the dust fluid might be almost equal to the speed of light by gravitational acceleration. Therefore the analytic solution describing the dynamics of cylindrical null dust might be the crudest approximate solution of the last stage of the gravitational collapse. In this paper, we regard this null dust solution as a background and perform `high-speed approximation' to know the gravitational collapse of ordinary timelike dust fluid; the `deviation of the timelike 4-velocity vector field from null' is treated as a perturbation. In contrast with the null dust approximation, our approximation scheme can describe the generation of gravitational waves in the course of the cylindrically symmetric dust collapse.Comment: 15 page

    The simple analysis method of nonlinear frequency distortions in FMCW radar, Journal of Telecommunications and Information Technology, 2001, nr 4

    Get PDF
    The paper presents a simple method for estimating nonlinear frequency distortions of linear frequency modulated (LFM) signals used in FMCW radars. This method, derived from the polynomial model of the nonlinear FM signal phase, is based on finding the maximum of two-dimensional chirp-like transform of the IF video signal. The IF signal is obtained by mixing transmitted FM signal with its delayed copy. Using suggested transform we show that the presented method is able to detect and classify signal distortions

    Cumulant ratios and their scaling functions for Ising systems in strip geometries

    Full text link
    We calculate the fourth-order cumulant ratio (proposed by Binder) for the two-dimensional Ising model in a strip geometry L x oo. The Density Matrix Renormalization Group method enables us to consider typical open boundary conditions up to L=200. Universal scaling functions of the cumulant ratio are determined for strips with parallel as well as opposing surface fields.Comment: 4 pages, RevTex, one .eps figure; references added, format change

    Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: Validation for tissue oxygenation studies

    Get PDF
    We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods

    A Reformulation of the Hoop Conjecture

    Full text link
    A reformulation of the Hoop Conjecture based on the concept of trapped circle is presented. The problems of severe compactness in every spatial direction, and of how to superpose the hoops with the surface of the black hole, are resolved. A new conjecture concerning "peeling" properties of dynamical/trapping horizons is propounded. A novel geometric Hoop inequality is put forward. The possibility of carrying over the results to arbitrary dimension is discussed.Comment: 6 pages, no figures. New references included, typos corrected, explanatory comments added. Much shorter version, in order to match EPL length restrictions. To be published in EP

    Numerical Approaches to Spacetime Singularities

    Get PDF
    This Living Review updates a previous version which its itself an update of a review article. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.Comment: 51 pages, 6 figures may be found in online version: Living Rev. Relativity 2002-1 at www.livingreviews.or

    A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (SCC) remains among the most aggressive human cancers. Tumour progression and aggressiveness in SCC are largely driven by tumour-propagating cells (TPCs). Aerobic glycolysis, also known as the Warburg effect, is a characteristic of many cancers; however, whether this adaptation is functionally important in SCC, and at which stage, remains poorly understood. Here, we show that the NAD+-dependent histone deacetylase sirtuin 6 is a robust tumour suppressor in SCC, acting as a modulator of glycolysis in these tumours. Remarkably, rather than a late adaptation, we find enhanced glycolysis specifically in TPCs. More importantly, using single-cell RNA sequencing of TPCs, we identify a subset of TPCs with higher glycolysis and enhanced pentose phosphate pathway and glutathione metabolism, characteristics that are strongly associated with a better antioxidant response. Together, our studies uncover enhanced glycolysis as a main driver in SCC, and, more importantly, identify a subset of TPCs as the cell of origin for the Warburg effect, defining metabolism as a key feature of intra-tumour heterogeneity

    Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice

    Get PDF
    An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and 99mTc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis
    • 

    corecore