435 research outputs found

    Symmetry Classification of Diatomic Molecular Chains

    Full text link
    A symmetry classification of possible interactions in a diatomic molecular chain is provided. For nonlinear interactions the group of Lie point transformations, leaving the lattice invariant and taking solutions into solutions, is at most five-dimensional. An example is considered in which subgroups of the symmetry group are used to reduce the dynamical differential-difference equations to purely difference ones.Comment: 27 pages, one figur

    Symmetries of Discrete Dynamical Systems Involving Two Species

    Get PDF
    The Lie point symmetries of a coupled system of two nonlinear differential-difference equations are investigated. It is shown that in special cases the symmetry group can be infinite dimensional, in other cases up to 10 dimensional. The equations can describe the interaction of two long molecular chains, each involving one type of atoms.Comment: 40 pages, no figures, typed in AMS-LaTe

    Third-order superintegrable systems separable in parabolic coordinates

    Full text link
    In this paper, we investigate superintegrable systems which separate in parabolic coordinates and admit a third-order integral of motion. We give the corresponding determining equations and show that all such systems are multi-separable and so admit two second-order integrals. The third-order integral is their Lie or Poisson commutator. We discuss how this situation is different from the Cartesian and polar cases where new potentials were discovered which are not multi-separable and which are expressed in terms of Painlev\'e transcendents or elliptic functions

    Third order superintegrable systems separating in polar coordinates

    Full text link
    A complete classification is presented of quantum and classical superintegrable systems in E2E_2 that allow the separation of variables in polar coordinates and admit an additional integral of motion of order three in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlev\'e transcendent or in terms of the Weierstrass elliptic function

    Lie Symmetries and Exact Solutions of First Order Difference Schemes

    Full text link
    We show that any first order ordinary differential equation with a known Lie point symmetry group can be discretized into a difference scheme with the same symmetry group. In general, the lattices are not regular ones, but must be adapted to the symmetries considered. The invariant difference schemes can be so chosen that their solutions coincide exactly with those of the original differential equation.Comment: Minor changes and journal-re

    Superintegrability on the two dimensional hyperboloid II

    Get PDF
    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't yet been studied. We give an example of an interbasis expansion and work out the structure of the quadratic algebra generated by the integrals of motion.Comment: 18 pages, LaTex; 1 figure (eps

    Solvable Lie algebras with triangular nilradicals

    Full text link
    All finite-dimensional indecomposable solvable Lie algebras L(n,f)L(n,f), having the triangular algebra T(n) as their nilradical, are constructed. The number of nonnilpotent elements ff in L(n,f)L(n,f) satisfies 1fn11\leq f\leq n-1 and the dimension of the Lie algebra is dimL(n,f)=f+1/2n(n1)\dim L(n,f)=f+{1/2}n(n-1)

    Soliton surfaces associated with symmetries of ODEs written in Lax representation

    Full text link
    The main aim of this paper is to discuss recent results on the adaptation of the Fokas-Gel'fand procedure for constructing soliton surfaces in Lie algebras, which was originally derived for PDEs [Grundland, Post 2011], to the case of integrable ODEs admitting Lax representations. We give explicit forms of the \g-valued immersion functions based on conformal symmetries involving the spectral parameter, a gauge transformation of the wave function and generalized symmetries of the linear spectral problem. The procedure is applied to a symmetry reduction of the static ϕ4\phi^4-field equations leading to the Jacobian elliptic equation. As examples, we obtain diverse types of surfaces for different choices of Jacobian elliptic functions for a range of values of parameters.Comment: 14 Pages, 2 figures Conference Proceedings for QST7 Pragu

    Point Symmetries of Generalized Toda Field Theories

    Get PDF
    A class of two-dimensional field theories with exponential interactions is introduced. The interaction depends on two ``coupling'' matrices and is sufficiently general to include all Toda field theories existing in the literature. Lie point symmetries of these theories are found for an infinite, semi-infinite and finite number of fields. Special attention is accorded to conformal invariance and its breaking.Comment: 25 pages, no figures, Latex fil
    corecore