385 research outputs found

    The role of quasi-momentum in the resonant dynamics of the atom-optics kicked rotor

    Full text link
    We examine the effect of the initial atomic momentum distribution on the dynamics of the atom-optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi-momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity of the quantum resonances and in the semiclassical limit of vanishing kicking period. It is found that for the same experimental distribution of quasi-momenta, significant deviations from the kicked rotor model are induced close to quantum resonance, while close to the classical resonance (i.e. for small kicking period) the effect of the quasi-momentum vanishes.Comment: 10 pages, 4 figures, to be published in J. Phys. A, Special Issue on 'Trends in Quantum Chaotic Scattering

    Dissipation induced macroscopic entanglement in an open optical lattice

    Full text link
    We introduce a method for the dissipative preparation of strongly correlated quantum states of ultracold atoms in an optical lattice via localized particle loss. The interplay of dissipation and interactions enables different types of dynamics. This ushers a new line of experimental methods to maintain the coherence of a Bose-Einstein condensate or to deterministically generate macroscopically entangled quantum states.Comment: 4 figure

    Transient localization in the kicked Rydberg atom

    Get PDF
    We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg atom is shown to possess in addition to the quantum localization time Ď„L\tau_L a second cross-over time tDt_D where quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number at fixed kick strength increases. The survival probability as a function of frequency in the transient localization regime Ď„L<t<tD\tau_L<t<t_D is characterized by highly irregular, fractal-like fluctuations

    Quantum to Classical Walk Transitions Tuned by Spontaneous Emissions

    Get PDF
    We have recently realized a quantum walk in momentum space with a rubidium spinor BoseEinstein condensate by applying a periodic kicking potential as a walk operator and a resonant microwave pulse as a coin toss operator. The generated quantum walks appear to be stable for up to ten steps and then quickly transit to classical walks due to spontaneous emissions induced by laser beams of the walk operator. We investigate these quantum to classical walk transitions by introducing well-controlled spontaneous emissions with an external light source during quantum walks. Our findings demonstrate a scheme to control the robustness of the quantum walks and can also be applied to other cold atom experiments involving spontaneous emissions

    Light shift induced behaviors observed in momentum-space quantum walks

    Get PDF
    Quantum walks (QWs) have seen many advances both experimentally and theoretically over the last decade with many proposed applications. Recently, a QW was experimentally realized utilizing a Bose-Einstein Condensate (BEC) in momentum space. This QW was observed to be stable up to fifteen steps and exhibited behavior that agreed generally well with theoretical predictions. However, the QW also showed interesting behavior within the momentum distribution that wasn’t adequately explained by the theory. We propose a new theoretical model to offer an explanation based upon the parameters within the conducted experiments. This model also predicts that the discrepancy is dependent upon the initial momentum states used in creating the QW

    Engineering transport by concatenated maps

    Full text link
    We present a generalized kick rotor model in which the phase of the kick can vary from kick to kick. This additional freedom allows one to control the transport in phase space. For a specific choice of kick-to-kick phases, we predict novel forms of accelerator modes which are potentially of high relevance for future experimental studies

    Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?

    Full text link
    We investigate the parametric fluctuations in the quantum survival probability of an open version of the delta-kicked rotor model in the deep quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E vol. 65 015203(R)] predict the existence of parametric fractal fluctuations owing to the strong dynamical localisation of the eigenstates of the kicked rotor. We discuss the possibility of observing such dynamically-induced fractality in the quantum survival probability as a function of the kicking period for the atom-optics realisation of the kicked rotor. The influence of the atoms' initial momentum distribution is studied as well as the dependence of the expected fractal dimension on finite-size effects of the experiment, such as finite detection windows and short measurement times. Our results show that clear signatures of fractality could be observed in experiments with cold atoms subjected to periodically flashed optical lattices, which offer an excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl

    Non-hermitian approach to decaying ultracold bosonic systems

    Full text link
    A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a non-hermitian effective Hamiltonian whose quantum spectrum is analyzed. The direct access to the spectrum of the metastable many-body system allows us to easily identify relatively stable quantum states, corresponding to previously predicted solitonic many-body structures

    Driven Macroscopic Quantum Tunneling of Ultracold Atoms in Engineered Optical Lattices

    Full text link
    Coherent macroscopic tunneling of a Bose-Einstein condensate between two parts of an optical lattice separated by an energy barrier is theoretically investigated. We show that by a pulsewise change of the barrier height, it is possible to switch between tunneling regime and a self-trapped state of the condensate. This property of the system is explained by effectively reducing the dynamics to the nonlinear problem of a particle moving in a double square well potential. The analysis is made for both attractive and repulsive interatomic forces, and it highlights the experimental relevance of our findings
    • …
    corecore