263 research outputs found

    Detecting Alterations in Pulmonary Airway Development with Airway-by-Airway Comparison

    Get PDF
    Neonatal and postnatal exposures to air pollutants have adverse effects on lung development resulting in airway structure changes. Usually, generation-averaged analysis of airway geometric parameters is employed to differentiate between pulmonary airway trees. However, this method is limited, especially for monopodial branching trees such as in rat airways, because both quite proximal and less proximal airways that have very different structure and function may be in the same generation. To avoid limitations inherent in generation averaging, we developed a method that compares two trees airway-by-airway using micro CT image data from rat lungs. This computerized technique (1) identifies the geometry and architecture of the conducting airways from CT images, (2) extracts the main tree, (3) associates paired airways from the two different trees, and (4) develops summary statistics on the degree of similarity between populations of animals. By comparing the trees airway-by-airway, we found that the variance in airway length of the group exposed to diffusion flame particles (DFP) is significantly larger than the group raised in filtered air (FA). This method also found that rotation angle of the DFP group is significantly larger than FA, which is not as certain in the generation-based analysis. We suggest that airway-by-airway analysis complements generation-based averaging for detecting airway alterations

    Pennsylvanians\u27 Knowledge of Agriculture

    Get PDF
    In 2005, researchers at Pennsylvania State University surveyed 1,521 Pennsylvanians in 65 counties to determine their knowledge of and perceptions about agriculture in the state. The study looked to: assess the level of agricultural knowledge of Pennsylvanians; ascertain how personal characteristics and frequency of rural visitation related to agricultural knowledge and to the perceptions of citizens about various agricultural issues; explore the relationship of agricultural knowledge to public perceptions of selected agricultural issues; and suggest how information on Pennsylvanians’ knowledge, experiences, and perceptions of agriculture are relevant to policy makers. The study results showed that, overall, most participants believed they knew very little about the impacts of agriculture on the state, farming production practices, or agriculture and the environment. Their self-rating on matters related to food and nutrition was somewhat higher, but even here a substantial majority believed they were not well-informed. When asked to respond to factual questions dealing with the different knowledge areas, many participants failed to answer correctly, and even those who did select the right answer were seldom certain of their responses. For some questions, respondents who thought their answers were correct often provided the wrong answers. Many of the answers reflected misperceptions about agriculture and its impact on the state. The survey analysis showed that direct personal contact with farming and visiting rural areas were clearly the most important experiences associated with higher levels of agricultural knowledge. The findings also showed that people who have greater agricultural knowledge differ in their views and actions from those with less understanding of agriculture, and this, coupled with the low levels of knowledge found in the population studied, suggests that it is important that efforts be made to educate the public about the nature and impacts of agriculture. To educate the public, the researchers recommended maintaining, and possibly expanding, Agriculture in the Classroom programs that provide agricultural education to school children; developing and expanding programs that allow people to visit working farms in the state; intensifying programs to enhance agricultural tourism and rural visitation; and developing a periodical directed to the general population, which features articles on Pennsylvania farming, agritourism, farm facts and historical notes, and agricultural research findings

    Toddlers Activate Lexical Semantic Knowledge in the Absence of Visual Referents: Evidence from Auditory Priming

    Get PDF
    Language learners rapidly acquire extensive semantic knowledge, but the development of this knowledge is difficult to study, in part because it is difficult to assess young children\u27s lexical semantic representations. In our studies, we solved this problem by investigating lexical semantic knowledge in 24-month-olds using the Head-turn Preference Procedure. In Experiment 1, looking times to a repeating spoken word stimulus (e.g., kitty-kitty-kitty) were shorter for trials preceded by a semantically related word (e.g., dog-dog-dog) than trials preceded by an unrelated word (e.g., juice-juice-juice). Experiment 2 yielded similar results using a method in which pairs of words were presented on the same trial. The studies provide evidence that young children activate of lexical semantic knowledge, and critically, that they do so in the absence of visual referents or sentence contexts. Auditory lexical priming is a promising technique for studying the development and structure of semantic knowledge in young children

    EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.A routine part of the process for developing National Institute for Health and Care Excellence (NICE) medical technologies guidance is a submission of clinical and economic evidence by the technology manufacturer. The Birmingham and Brunel Consortium External Assessment Centre (EAC; a consortium of the University of Birmingham and Brunel University) independently appraised the submission on the EXOGEN bone healing system for long bone fractures with non-union or delayed healing. This article is an overview of the original evidence submitted, the EAC’s findings, and the final NICE guidance issued.The Birmingham and Brunel Consortium is funded by NICE to act as an External Assessment Centre for the Medical Technologies Evaluation Programme

    Molecular dynamics simulations of vibrated granular gases

    Full text link
    We present molecular dynamics simulations of mono- or bidisperse inelastic granular gases driven by vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a situation often met experimentally, density and temperature fields display heterogeneous profiles in the direction perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients, density...) analyzed. The validity of a recently proposed Random Restitution Coefficient model is assessed through the study of projected collisions onto the direction perpendicular to that of energy injection. For the binary mixture, the non-equipartition of translational kinetic energy is studied and compared both to experimental data and to the case of homogeneous energy injection (``stochastic thermostat''). The rescaled velocity distribution functions are found to be very similar for both species

    Tracer diffusion in granular shear flows

    Full text link
    Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor DijD_{ij} instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements DijD_{ij} is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.Comment: 5 figure

    Navier-Stokes transport coefficients of dd-dimensional granular binary mixtures at low density

    Full text link
    The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman-Enskog method for states near the local homogeneous cooling state. It is shown that the Navier-Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)] to an arbitrary number of dimensions. To check the accuracy of the Chapman-Enskog results, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy

    Diffusion of impurities in a granular gas

    Full text link
    Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are obtained by solving the Boltzmann--Lorentz equation by means of the Chapman--Enskog method. In the first order in the density gradient of impurities, the diffusion coefficient DD is determined as the solution of a linear integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper, we evaluate DD up to the second order in the Sonine expansion and get explicit expressions for DD in terms of the restitution coefficients for the impurity--gas and gas--gas collisions as well as the ratios of mass and particle sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo (DSMC) method. In the simulations, the diffusion coefficient is measured via the mean square displacement of impurities. The comparison between theory and simulation shows in general an excellent agreement, except for the cases in which the gas particles are much heavier and/or much larger than impurities. In theses cases, the second Sonine approximation to DD improves significantly the qualitative predictions made from the first Sonine approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.
    corecore