18 research outputs found

    Prostaglandin E2 stimulates progression-related gene expression in early colorectal adenoma cells

    Get PDF
    Upregulation of cyclooxygenase-2 (COX-2) and prostaglandin-dependent vascularisation in small adenomatous polyps is an essential part of colon carcinogenesis. To study the underlying cellular mechanisms, LT97 and Caco2 human colorectal tumour cells not expressing endogenous COX-2 were exposed to 1 μM prostaglandin E2 (PGE2) in their medium. At 30 min after addition, expression of c-fos was stimulated 5-fold and 1.3-fold, respectively, depending on the activation of both extracellular signal-regulated kinase and p38. The amount of c-jun in nuclear extracts was increased 20% in LT97 cells. Expression of COX-2 was upregulated 1.7-fold in LT97 cells and 1.5-fold in Caco2 2 h after prostaglandin (PG) addition by a p38-mediated pathway. The known PGE2 target gene vascular endothelial growth factor (VEGF) was not modulated. Effects of sustained PGE2 production were studied in VACO235 cells that have high endogenous COX-2 and in LT97 cells infected with an adenovirus expressing COX-2. Prostaglandin E2 secretion into the medium was 1–2 nM and 250 pM, respectively. Expression of both VEGF and c-fos was high in VACO235 cells. In LT97 cells, COX-2 upregulated c-fos expression and c-jun content in nuclear extracts 1.7- and 1.2-fold, respectively, in a PG-dependent way. This shows that exogenous PGE2 as well as COX-2 overexpression affect signalling and gene expression in a way that enhances tumour progression

    The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

    Get PDF
    TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction

    Role of endothelial NO-synthase in early brain injury after experimental subarachnoid hemorhage

    No full text

    Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli

    No full text
    The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner-take-all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single-cell resolution. Using time-lapse microscopy in perfused microchannels, we analyzed the competition between N-acetyl-glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co-expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co-expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner-take-all behaviour and stochastic co-expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions

    Quadruple-Phase MDCT of the liver in patients with suspected hepatocellular carcinoma: effect of contrast material flow rate

    No full text
    OBJECTIVE: The purposes of this study were to evaluate the effect of contrast material flow rate (3 mL/sec vs 5 mL/sec) on the detection and visualization of hepatocellular carcinoma (HCC) with MDCT and the safety profile of iodixanol at different injection rates. SUBJECTS AND METHODS: In a prospective, randomized multicenter trial, 97 patients (83 men and 14 women, with a mean age of 64 years) suspected of having HCC underwent quadruple-phase (double arterial, portal venous, delayed phase) 4-16-MDCT. Patients were randomized to receive iodixanol, 320 mg I/mL (1.5 mL/kg body weight), at a flow rate of 3 mL/sec (48 patients) or 5 mL/sec (49 patients). Qualitative (lesion detection, image quality) and quantitative (liver and aortic enhancement, tumor-liver contrast) analyses and safety assessment were performed. RESULTS: Overall, 145 HCCs were detected in the 5 mL/sec group and 100 HCCs in the 3 mL/sec group (p < 0.05). More lesions equal to or less than 1 cm were detected at 5 mL/sec (33 vs 16 lesions). The late arterial phase showed significantly more lesions than the early, arterial phase (133 vs 100 and 96 vs 67 lesions, respectively, p < 0.0001). Hyperattenuating HCCs were better visualized in the late arterial phase at 5 mL/sec (excellent visualization: 54% vs 27%). Using a flow of 5 mL/sec did not increase the rate of patient discomfort or contrast media-related adverse events. Most discomfort in both groups was of mild intensity and there was no severe discomfort. CONCLUSION: For detection of HCC with MDCT, a higher flow rate of 5 mL/sec is recommended. Visualization of hyperattenuating HCC is improved with no greater discomfort or adverse events

    Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes.

    Get PDF
    Production of type I interferons (IFN-I, mainly IFNalpha and IFNbeta) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized "interferon-producing cell" (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen. We have addressed this question by studying infections of mice with the intracellular bacterium Listeria monocytogenes. Protective innate immunity against this pathogen is weakened by IFN-I activity. In mice infected with L. monocytogenes, systemic IFN-I was amplified via IFN-beta, the IFN-I receptor (IFNAR), and transcription factor interferon regulatory factor 7 (IRF7), a molecular circuitry usually characteristic of non-pDC producers. Synthesis of serum IFN-I did not require TLR9. In contrast, in vitro-differentiated pDC infected with L. monocytogenes needed TLR9 to transcribe IFN-I mRNA. Consistent with the assumption that pDC are not the producers of systemic IFN-I, conditional ablation of the IFN-I receptor in mice showed that most systemic IFN-I is produced by myeloid cells. Furthermore, results obtained with FACS-purified splenic cell populations from infected mice confirmed the assumption that a cell type with surface antigens characteristic of macrophages and not of pDC is responsible for bulk IFN-I synthesis. The amount of IFN-I produced in the investigated mouse lines was inversely correlated to the resistance to lethal infection. Based on these data, we propose that the engagement of pDC, the mode of IFN-I mobilization, as well as the shaping of the antimicrobial innate immune response by IFN-I differ between intracellular pathogens
    corecore