612 research outputs found
An Introduction to the Inverse Quantum Bound State Problem in One Dimension
A technique to reconstruct one-dimensional, reflectionless potentials and the
associated quantum wave functions starting from a finite number of known energy
spectra is discussed. The method is demonstrated using spectra that scale like
the lowest energy states of standard problems encountered in the undergraduate
curriculum such as: the infinite square well, the simple harmonic oscillator,
and the one-dimensional hydrogen atom.Comment: 10 pages, 10 figures, Submitted to Am. J. Phys. August 201
An ica algorithm for analyzing multiple data sets
In this paper we derive an independent-component analysis (ICA) method for analyzing two or more data sets simultaneously. Our model permits there to be components individual to the various data sets, and others that are common to all the sets. We explore the assumed time autocorrelation of independent signal components and base our algorithm on prediction analysis. We illustrate the algorithm using a simple image separation example. Our aim is to apply this method to functional brain mapping using functional magnetic resonance imaging (fMRI). 1
Possible effect of dietary phytase supplementation on broiler sodium requirement.
Projeto/Plano de Ação: 11.11.11.111
A Spatially Robust ICA Algorithm for Multiple fMRI Data Sets
In this paper we derive an independent-component analysis (ICA) method for analyzing two or more data sets simultaneously. Our model extracts independent components common to all data sets and independent data-set-specific components. We use time-delayed autocorrelations to obtain independent signal components and base our algorithm on prediction analysis. We applied this method to functional brain mapping using functional magnetic resonance imaging (fMRI). The results of our 3-subject analysis demonstrate the robustness of the algorithm to the spatial misalignment intrinsic in multiple-subject fMRI data sets. 1
Doping a semiconductor to create an unconventional metal
Landau Fermi liquid theory, with its pivotal assertion that electrons in
metals can be simply understood as independent particles with effective masses
replacing the free electron mass, has been astonishingly successful. This is
true despite the Coulomb interactions an electron experiences from the host
crystal lattice, its defects, and the other ~1022/cm3 electrons. An important
extension to the theory accounts for the behaviour of doped semiconductors1,2.
Because little in the vast literature on materials contradicts Fermi liquid
theory and its extensions, exceptions have attracted great attention, and they
include the high temperature superconductors3, silicon-based field effect
transistors which host two-dimensional metals4, and certain rare earth
compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid
behaviour in all of these systems remains controversial. Here we report that an
entirely different and exceedingly simple class of materials - doped small gap
semiconductors near a metal-insulator transition - can also display a non-Fermi
liquid state. Remarkably, a modest magnetic field functions as a switch which
restores the ordinary disordered Fermi liquid. Our data suggest that we have
finally found a physical realization of the only mathematically rigourous route
to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there
are too few mobile electrons to compensate for the spins of unpaired electrons
localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure
Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition
Porous anodic films on 1050 aluminium substrate were coloured by AC electrodeposition of nickel. Several experiments were performed at different deposition voltages and nickel concentrations in the electrolyte in order to correlate the applied electrical power to the electrical behaviour, as well as the characteristics and properties of the coatings. The content of nickel inside the coatings reached 1.67 g/m2, depending on the experimental conditions. According to the applied AC voltage in comparison with the threshold voltage Ut, the coating either acted only as a capacitor when U\Ut and, when U[Ut, the behaviour during the anodic and cathodic parts of the power sine wave was different. In particular, due to the semi-conducting characteristics of the barrier layer, additional oxidation of the aluminium substrate occurred during the anodic part of the electrical signal, whilst metal deposition (and solvent reduction) occurred during the cathodic part; these mechanisms correspond to the blocked and pass directions of the barrier layer/electrolyte junction, respectively
Interesting magnetic properties of FeCoSi alloys
Solid solution between nonmagnetic narrow gap semiconductor FeSi and
diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with
long-range helical magnetic ordering, for a wide range of intermediate
concentration. We report various interesting magnetic properties of these
alloys, including low temperature re-entrant spin-glass like behaviour and a
novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya
interaction in the magnetic response of these non-centrosymmetric alloys is
discussed.Comment: 11 pages and 3 figure
Structural and electrical transport properties of superconducting Au{0.7}In{0.3} films: A random array of superconductor-normal metal-superconductor (SNS) Josephson junctions
The structural and superconducting properties of Au{0.7}In{0.3} films, grown
by interdiffusion of alternating Au and In layers, have been studied. The films
were found to consist of a uniform solid solution of Au{0.9}In{0.1}, with
excess In precipitated in the form of In-rich grains of various Au-In phases
(with distinct atomic compositions), including intermetallic compounds. As the
temperature was lowered, these individual grains became superconducting at a
particular transition temperature (Tc), determined primarily by the atomic
composition of the grain, before a fully superconducting state of zero
resistance was established. From the observed onset Tc, it was inferred that up
to three different superconducting phases could have formed in these
Au{0.7}In{0.3} films, all of which were embedded in a uniform Au{0.9}In{0.1}
matrix. Among these phases, the Tc of a particular one, 0.8 K, is higher than
any previously reported for the Au-In system. The electrical transport
properties were studied down to low temperatures. The transport results were
found to be well correlated with those of the structural studies. The present
work suggests that Au{0.7}In{0.3} can be modeled as a random array of
superconductor-normal metal-superconductor (SNS) Josephson junctions. The
effect of disorder and the nature of the superconducting transition in these
Au{0.7}In{0.3} films are discussed.Comment: 8 text pages, 10 figures in one separate PDF file, submitted to PR
Microwave-induced control of Free Electron Laser radiation
The dynamical response of a relativistic bunch of electrons injected in a
planar magnetic undulator and interacting with a counterpropagating
electromagnetic wave is studied. We demonstrate a resonance condition for which
the free electron laser (FEL) dynamics is strongly influenced by the presence
of the external field. It opens up the possibility of control of short
wavelength FEL emission characteristics by changing the parameters of the
microwave field without requiring change in the undulator's geometry or
configuration. Numerical examples, assuming realistic parameter values
analogous to those of the TTF-FEL, currently under development at DESY, are
given for possible control of the amplitude or the polarization of the emitted
radiation.Comment: 14 pages, 5 figures, accepted for publication in Phys. Rev.
- …
