705 research outputs found
Reduced order modeling of distillation systems
The concept of distillation separation feasibility is investigated using reduced-order models. Three different models of nonequilibrium rate-based packed distillation columns are developed, each with progressive levels of complexity. The final model is the most complex, and is based on the Maxwell-Stefan theory of mass transfer. The first and second models are used as building blocks in the approach to the final model, as various simplifying assumptions are systematically relaxed. The models are all developed using orthogonal collocation. The order reduction properties of collocation are well documented. A low order model is desirable as the subsequent generation of data required for assessing the separation feasibility is fast. The first model is the simplest as constant molar overflow is assumed. This assumption is relaxed in the subsequent models. The second and third models differ in their respective mass and energy transfer. The second model uses a constant bulk phase approximation for an overall gas phase transfer coefficient. The third model uses rigorous Maxwell-Stefan mass transfer coefficients, which vary throughout the column. In all models, the bootstrap equation for the energy balance across the two-phase film is used after the appropriate modifications are made based on the system assumptions. Starting point solutions and minimum height and flows analysis are presented for all models. The first model is used to develop an azeotropic methodology for identifying and characterizing pinches. Different numerical techniques are also compared, and the accuracy of orthogonal collocation is verified. Ternary and pseudo McCabe-Thiele diagrams are used to represent the result$ for the multicomponent models 2 and 3. The results for models 2 and 3 are similar. This is expected as they differ only in the mass and heat transfer definitions. An argument is made for a specific definition of an objective function for models 2 and 3, which is subsequently used to generate separation surfaces. This function is defined such that there will always be a solution and for this reason is deemed superior to any alternatives. Feasible regions are identified using a grid projection of the relevant sections of the separation surfaces. The data set contained within the feasible region will be used in an optimizer in future work. In general, this work involves an understanding and application of the collocation mathematics to distillation systems. A further understanding of distillation systems, the associated mathematics and degrees of freedom is essential. A large section of this work is devoted to explaining and manipulating the available degrees of freedom, such that the desired end result of a feasible region for a specific separation can be obtained. Other complicating factors include the use of the collocation boundary conditions, and the relationship between these and the overall degrees of freedom for the system. In the literature, collocation is largely applied to staged columns. The resulting feed stage discontinuities are smoothed out using various interpolation routines. Both of these approaches are incorrect. It is shown that the use of collocation in staged columns is fundamentally flawed due to the underlying theory of staged distillation and the implications of collocation assumptions. Further, the feed discontinuities present in all the results are intrinsic features of the system and should be preserved. It is further concluded that Models 2 and 3 were correct in comparison with each other. Finally it was shown that the separation feasibility was successfully determined using the optimal objective function. This success was based on the accuracy and order reduction achieved through the use of collocation. Further work will involve optimizing the data found in the feasible region using Non-Linear Programming
Experimental Investigation of Pervaporation Membranes for Biobutanol Separation
Biotechnological production of chemical building blocks is one important step towards a more sustainable production. Unfortunately, the products to be separated are often highly diluted. Pervaporation has received increasing attention for the separation of small amounts of organic compounds from aqueous solutions, especially in the separation of butanol from water or from fermentation broth. To evaluate the potential of pervaporation for biobutanol recovery a consistent database is required, describing the dependency of permeate fluxes and selectivities on process variables like temperature, permeate pressure as well as feed concentrations and compositions. Therefore, within this work we investigated the separation behaviour of a commercially available polydimethylsiloxane (PDMS) membrane and membranes based on poly(ether block amide) (PEBA) fabricated in our own laboratory. The membranes were tested under varying operating conditions. Fermentation by-products or impurities may affect the pervaporation separation performance. Therefore, in addition, the permeate fluxes and the influence of acetone, ethanol, acetic and butyric acid and 1,3-propanediol have been investigated in detail as well. Several differences in the permeability and selectivity of PDMS and PEBA were observed during the experimental study. Swelling experiments were applied to further analyse the separation behaviour of PDMS and PEBA more in detail. Finally the influence of the observed separation performances on the overall butanol pervaporation process is discussed. It was found that especially well permeating by-products like acetone can drastically influence the subsequent downstreaming process
Development of a fast screening method for the direct determination of chlorinated persistent organic pollutants in fish oil by high-resolution continuum source graphite furnace molecular absorption spectrometry
The authors are grateful to the Conselho Nacional de Desenvolvimento Científico and Tecnológico (CNPq); the present research was mostly financed through Project no. CNPq 406877/2013-0. The authors are also grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and scholarships, and to Analytik Jena for financial support and donation of the contrAA 600 high-resolution continuum source atomic absorption spectrometer.Peer reviewedPostprin
Free-field propagation of high intensity noise
Research on high intensity (finite amplitude) acoustic waves shows that nonlinear distortion effects generally result in a shift of energy to higher frequencies. The higher intensities associated with supersonic jets would therefore indicate that high frequency enhancement of the spectrum should occur, resulting in the differences observed between subsonic and supersonic jets. A 10,000 acoustic watt source installed in an anechoic chamber generates sound levels such that acoustic shocks are readily observable. Dual frequency excitation of the source produces a strong parametric effect with a difference frequency comparable in level to the primary frequency. The test set up and recording equipment being used to determine the finite amplitude noise representative of an actual supersonic jet are described as well as the development of a computer program based on Burger's equation. The spectra of 1/2 octave band, 1 kHz sine wave, and dual frequency input and output are presented in graphs along with waveforms at Z = .025, 0.1, and 1.0
Description of an ancient social bee trapped in amber using diagnostic radioentomology
The application of non-invasive imaging technologies using X-radiation (diagnostic radioentomology, ‘DR') is demonstrated for the study of amber-entombed social bees. Here, we examine the external and internal morphology of an Early Miocene (Burdigalian) stingless bee (Apinae: Meliponini) from the Dominican Republic using non-destructive X-ray microtomography analysis. The study permits the accurate reconstruction of features otherwise obscured or impossible to visualize without destroying the sample and allows diagnosis of the specimen as a new species, Proplebeia adbita Greco and Enge
Mission operations and command assurance: Instilling quality into flight operations
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience
Description of an ancient social bee trapped in amber using diagnostic radioentomology
The application of non-invasive imaging technologies using X-radiation (diagnostic radioentomology, ‘DR’) is demonstrated for the study of amber-entombed social bees. Here, we examine the external and internal morphology of an Early Miocene (Burdigalian) stingless bee (Apinae: Meliponini) from the Dominican Republic using non-destructive X-ray microtomography analysis. The study permits the accurate reconstruction of features otherwise obscured or impossible to visualize without destroying the sample and allows diagnosis of the specimen as a new species, Proplebeia adbita Greco and Engel
Mission operations and command assurance: Flight operations quality improvements
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience
- …