22 research outputs found
Nanoscale friction of biomimetic hair surfaces
We investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated silica surfaces functionalised with monolayers formed from either octadecyl or sulfonate groups, which are representative of the surfaces of virgin and ultimately bleached hair, respectively. In the simulations, friction is monitored between coarse-grained model hair surfaces with different levels of chemical damage, where a specified amount of grafted octadecyl groups are randomly replaced with sulfonate groups. The sliding velocity dependence of friction in the simulations can be described using an extended stress-augmented thermally activation model. As the damage level increases in the simulations, the friction coefficient generally increases, but its sliding velocity-dependence decreases. At low sliding velocities, which are closer to those encountered experimentally and physiologically, we observe a monotonic increase of the friction coefficient with damage ratio, which is consistent with our new experiments using biomimetic surfaces and previous ones using real hair. This observation demonstrates that modified surface chemistry, rather than roughness changes or subsurface damage, control the increase in nanoscale friction of bleached or chemically damaged hair. We expect the methods and biomimetic surfaces proposed here to be useful to screen the tribological performance of hair care formulations both experimentally and computationally
High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans
Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being
Coarse-grained molecular models of the surface of hair
We present a coarse-grained molecular model of the surface of human hair, which consists of a supported lipid monolayer, in the MARTINI framework. Using coarse-grained molecular dynamics (MD) simulations, we identify a lipid grafting distance that yields a monolayer thickness consistent with both atomistic MD simulations and experimental measurements of the hair surface. Coarse-grained models for fully-functionalised, partially damaged, and fully damaged hair surfaces are created by randomly replacing neutral thioesters with anionic sulfonate groups. This mimics the progressive removal of fatty acids from the hair surface by bleaching and leads to chemically heterogeneous surfaces. Using molecular dynamics (MD) simulations, we study the island structures formed by the lipid monolayers at different degrees of damage in vacuum and in the presence of polar (water) and non-polar (n-hexadecane) solvents. We also use MD simulations to compare the wetting behaviour of water and n-hexadecane droplets on the model surfaces through contact angle measurements, which are compared to experiments using virgin and bleached hair. The model surfaces capture the experimentally-observed transition of the hair surface from hydrophobic (and oleophilic) to hydrophilic (and oleophobic) as the level of bleaching damage increases. By selecting surfaces with specific damage ratios, we obtain contact angles from the MD simulations that are in good agreement with experiments for both solvents on virgin and bleached human hairs. To negate the possible effects of microscale curvature and roughness of real hairs on wetting, we also conduct additional experiments using biomimetic surfaces that are co-functionalised with fatty acids and sulfonate groups. In both the MD simulations and experiments, the cosine of the water contact angle increases linearly with the sulfonate group surface coverage with a similar slope. We expect that the proposed systems will be useful for future molecular dynamics simulations of the adsorption and tribological behaviour of hair, as well as other chemically heterogeneous surfaces
Effects of surfactant adsorption on the wettability and friction of biomimetic surfaces
The properties of solid–liquid interfaces can be markedly altered by surfactant adsorption. Here, we use molecular dynamics (MD) simulations to study the adsorption of ionic surfactants at the interface between water and heterogeneous solid surfaces with randomly arranged hydrophilic and hydrophobic regions, which mimic the surface properties of human hair. We use the coarse-grained MARTINI model to describe both the hair surfaces and surfactant solutions. We consider negatively-charged virgin and bleached hair surface models with different grafting densities of neutral octadecyl and anionic sulfonate groups. The adsorption of cationic cetrimonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) surfactants from water are studied above the critical micelle concentration. The simulated adsorption isotherms suggest that cationic surfactants adsorb to the surfaces via a two-stage process, initially forming monolayers and then bilayers at high concentrations, which is consistent with previous experiments. Anionic surfactants weakly adsorb via hydrophobic interactions, forming only monolayers on both virgin and medium bleached hair surfaces. We also conduct non-equilibrium molecular dynamics simulations, which show that applying cationic surfactant solutions to bleached hair successfully restores the low friction seen with virgin hair. Friction is controlled by the combined surface coverage of the grafted lipids and the adsorbed CTAB molecules. Treated surfaces containing monolayers and bilayers both show similar friction, since the latter are easily removed by compression and shear. Further wetting MD simulations show that bleached hair treated with CTAB increases the hydrophobicity to similar levels seen for virgin hair. Treated surfaces containing CTAB monolayers with the tailgroups pointing predominantly away from the surface are more hydrophobic than bilayers due to the electrostatic interactions between water molecules and the exposed cationic headgroups
Analysis of High-Throughput Sequencing and Annotation Strategies for Phage Genomes
Background: Bacterial viruses (phages) play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage.
Methodology/Principal Findings: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles), and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL) or of a whole genome shotgun library (WGSL), or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling.
Conclusions/Significance: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics