7,704 research outputs found

    Magnetic field switching in parallel quantum dots

    Full text link
    We show that the Coulomb blockade in parallel dots pierced by magnetic flux Φ\Phi completely blocks the resonant current for any value of Φ\Phi except for integer multiples of the flux quantum Φ0\Phi_0. This non-analytic (switching) dependence of the current on Φ\Phi arises only when the dot states that carry the current are of the same energy. The time needed to reach the steady state, however, diverges when ΦnΦ0\Phi\to n\Phi_0.Comment: additional explanations added, Europhysics Letters, in pres

    Non-coherent detection for ultraviolet communications with inter-symbol interference

    Get PDF
    Ultraviolet communication (UVC) serves as a promising supplement to share the responsibility for the overloads in conventional wireless communication systems. One challenge for UVC lies in inter-symbol-interference (ISI), which combined with the ambient noise, contaminates the received signals and thereby deteriorates the communication accuracy. Existing coherent signal detection schemes (e.g. maximum likelihood sequence detection, MLSD) require channel state information (CSI) to compensate the channel ISI effect, thereby falling into either a long overhead and large computational complexity, or poor CSI acquisition that further hinders the detection performance. Non-coherent schemes for UVC, although capable of reducing the complexity, cannot provide high detection accuracy in the face of ISI. In this work, we propose a novel non-coherent paradigm via the exploration of the UV signal features that are insensitive to the ISI. By optimally weighting and combining the extracted features to minimize the bit error rate (BER), the optimally-weighted non-coherent detection (OWNCD) is proposed, which converts the signal detection with ISI into a binary detection framework with a heuristic decision threshold. As such, the proposed OWNCD avoids the complex CSI estimation and guarantees the detection accuracy. Compared to the state-of-the-art MLSD in the cases of static and time-varying CSI, the proposed OWNCD can gain ∼1 dB and 8 dB in signal-to-noise-ratio (SNR) at the 7% overhead FEC limit (BER of 4.5×10 −3 , respectively, and can also reduce the computational complexity by 4 order of magnitud

    Quantum Criticality from in-situ Density Imaging

    Full text link
    We perform large-scale Quantum Monte Carlo (QMC) simulations for strongly interacting bosons in a 2D optical lattice trap, and confirm an excellent agreement with the benchmarking in-situ density measurements by the Chicago group [1]. We further present a general finite temperature phase diagram both for the uniform and the trapped systems, and demonstrate how the universal scaling properties near the superfluid(SF)-to-Mott insulator(MI) transition can be observed by analysing the in-situ density profile. The characteristic temperature to find such quantum criticality is estimated to be of the order of the single-particle bandwidth, which should be achievable in the present or near future experiments. Finally, we examine the validity regime of the local fluctuation-dissipation theorem (FDT), which can be a used as a thermometry in the strongly interacting regime.Comment: 4 page

    General formula for the four-quark condensate and vacuum factorization assumption

    Full text link
    By differentiating the dressed quark propagator with respect to a variable background field, the linear response of the dressed quark propagator in the presence of the background field can be obtained. From this general method, using the vector background field as an illustration, we derive a general formula for the four-quark condensate <0~:qˉ(0)γμq(0)qˉ(0)γμq(0):0~><{\tilde 0}|:{\bar q}(0)\gamma_\mu q(0){\bar q}(0)\gamma_\mu q(0):|{\tilde 0}>. This formula contains the corresponding fully dressed vector vertex and it is shown that factorization for <0~:qˉ(0)γμq(0)qˉ(0)γμq(0):0~><{\tilde 0}|:{\bar q}(0)\gamma_\mu q(0){\bar q}(0)\gamma_\mu q(0):| {\tilde 0}> holds only when the dressed vertex is taken to be the bare one. This property also holds for all other type of four-quark condensate.Comment: Revtex4, 11 pages, no figure

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Entangling two distant nanocavities via a waveguide

    Full text link
    In this paper, we investigate the generation of continuous variable entanglement between two spatially-separate nanocavities mediated by a coupled resonator optical waveguide in photonic crystals. By solving the exact dynamics of the cavity system coupled to the waveguide, the entanglement and purity of the two-mode cavity state are discussed in detail for the initially separated squeezing inputs. It is found that the stable and pure entangled state of the two distant nanocavities can be achieved with the requirement of only a weak cavity-waveguide coupling when the cavities are resonant with the band center of the waveguide. The strong couplings between the cavities and the waveguide lead to the entanglement sudden death and sudden birth. When the frequencies of the cavities lie outside the band of the waveguide, the waveguide-induced cross frequency shift between the cavities can optimize the achievable entanglement. It is also shown that the entanglement can be easily manipulated through the changes of the cavity frequencies within the waveguide band.Comment: 8 pages, 8 figure

    Spinal cord stimulation for cancer-related pain in adults

    Get PDF
    Background: This is an update of a review first published in The Cochrane Library in Issue 3, 2013. Cancer-related pain places a heavy burden on public health with related high expenditure. Severe pain is associated with a decreased quality of life in patients with cancer. A significant proportion of patients with cancer-related pain are under-treated. There is a need for more effective control of cancer-related pain. Spinal cord stimulation (SCS)may have a role in pain management. The effectiveness and safety of SCS for patients with cancer-related pain is currently unknown. Objectives: This systematic review evaluated the effectiveness of SCS for cancer-related pain compared with standard care using conventional analgesic medication. We also appraised risk and potential adverse events associated with the use of SCS. Search methods: This is an update of a review first published in The Cochrane Library in Issue 3, 2013. The search strategy for the update was the same as in the original review. We searched the following bibliographic databases in order to identify relevant studies: the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library;MEDLINE; EMBASE; and CBM(Chinese Biomedical Database) in October 2014. We also handsearched relevant journals. There were no language restrictions. Selection criteria: We planned to include randomised controlled trials (RCTs) that directly compared SCS with other interventions with regards to the effectiveness of pain management.We also planned to include cross-over trials that compared SCS with another treatment.We planned to identify non-randomised controlled trials but these would only be included if no RCTs could be found. Data collection and analysis: The literature search for the update of this review found 121 potentially eligible articles. The initial search strategy yielded 430 articles. By scrutinising titles and abstracts, we found 412 articles irrelevant to the analytical purpose of this systematic review due to different scopes of diseases or different methods of intervention (intrathecal infusion system; oral medication) or aims other than pain control (spinal cord function monitoring, bladder function restoration or amelioration of organ metabolism). The remaining 18 trials were reviewed as fullmanuscripts. No RCTs were identified. Fourteen sporadic case reports and review articles were excluded and four beforeand- after case series studies (92 participants) were included. Two review authors independently selected the studies to be included in the review according to the prespecified eligibility criteria. A checklist for methodological quality of non-randomised controlled trials was used (STROBE checklist) and all review authors discussed and agreed on the inclusion of trials and the results of the quality assessment. Main results: No new studies were identified for inclusion in this update of the review. Four before-and-after case series studies (a total of 92 participants) met our criteria for inclusion in the previous version of the review. All included trials adopted a visual analogue scale (VAS) to evaluate pain relief. Heterogeneity existed in terms of baseline characteristics, electrode and stimulator parameters, level of implantation and route of implantation; each trial reported data differently. In two trials, pain relief was achieved in 76% (48/63) of participants at the end of the follow-up period. In the third trial, pre-procedure VAS was 6 to 9 (mean 7.43 ); the one-month postimplant VAS was 2 to 4 (mean 3.07); the 12-month post-implant VAS was 1 to 3 (mean 2.67). In the fourth trial, the pre-procedure VAS was 6 to 9 (mean 7.07); 1 to 4 (mean 2.67) at one-month; 1 to 4 (mean 1.87) at 12 months. Analgesic use was largely reduced. The main adverse events were infection of sites of implantation, cerebrospinal fluid (CSF) leakage, pain at the sites of electrodes, dislodgement of the electrodes, and system failure; however, the incidence in participants with cancer could not be calculated. Since all trials were small, non-randomised controlled trials, they carried high or unclear risk of all types of bias. Authors’ conclusions: Since the first publication of this review, no new studies were identified. Current evidence is insufficient to establish the role of SCS in treating refractory cancer-related pain. Future randomised studies should focus on the implantation of SCS in participants with cancer related pain

    Spin and orbital angular momentum in gauge theories (II): QCD and nucleon spin structure

    Full text link
    Parallel to the construction of gauge invariant spin and orbital angular momentum for QED in paper (I) of this series, we present here an analogous but non-trivial solution for QCD. Explicitly gauge invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task, and opens a more promising avenue towards the understanding of the nucleon spin structure.Comment: 3 pages, no figure; presented by F. Wang at NSTAR200
    corecore