652 research outputs found

    Evaporation and Step Edge Diffusion in MBE

    Full text link
    Using kinetic Monte-Carlo simulations of a Solid-on-Solid model we investigate the influence of step edge diffusion (SED) and evaporation on Molecular Beam Epitaxy (MBE). Based on these investigations we propose two strategies to optimize MBE-growth. The strategies are applicable in different growth regimes: during layer-by-layer growth one can reduce the desorption rate using a pulsed flux. In three-dimensional (3D) growth the SED can help to grow large, smooth structures. For this purpose the flux has to be reduced with time according to a power law.Comment: 5 pages, 2 figures, latex2e (packages: elsevier,psfig,latexsym

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit

    Creation of the universe with a stealth scalar field

    Full text link
    The stealth scalar field is a non-trivial configuration without any back-reaction to geometry, which is characteristic for non-minimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by the Hartle and Hawking's semi-classical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe adde

    The conformal frame freedom in theories of gravitation

    Full text link
    It has frequently been claimed in the literature that the classical physical predictions of scalar tensor theories of gravity depend on the conformal frame in which the theory is formulated. We argue that this claim is false, and that all classical physical predictions are conformal-frame invariants. We also respond to criticisms by Vollick [gr-qc/0312041], in which this issue arises, of our recent analysis of the Palatini form of 1/R gravity.Comment: 9 pages, no figures, revtex; final published versio

    A lattice gas model of II-VI(001) semiconductor surfaces

    Get PDF
    We introduce an anisotropic two-dimensional lattice gas model of metal terminated II-IV(001) seminconductor surfaces. Important properties of this class of materials are represented by effective NN and NNN interactions, which result in the competition of two vacancy structures on the surface. We demonstrate that the experimentally observed c(2x2)-(2x1) transition of the CdTe(001) surface can be understood as a phase transition in thermal equilbrium. The model is studied by means of transfer matrix and Monte Carlo techniques. The analysis shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Possible implications for further experimental research are discussed.Comment: 7 pages, 2 figure

    Supersonic strain front driven by a dense electron-hole plasma

    Get PDF
    We study coherent strain in (001) Ge generated by an ultrafast laser-initiated high density electron-hole plasma. The resultant coherent pulse is probed by time-resolved x-ray diffraction through changes in the anomalous transmission. The acoustic pulse front is driven by ambipolar diffusion of the electron-hole plasma and propagates into the crystal at supersonic speeds. Simulations of the strain including electron-phonon coupling, modified by carrier diffusion and Auger recombination, are in good agreement with the observed dynamics.Comment: 4 pages, 6 figure

    Non-Abelian Black Holes in Brans-Dicke Theory

    Get PDF
    We find a black hole solution with non-Abelian field in Brans-Dicke theory. It is an extension of non-Abelian black hole in general relativity. We discuss two non-Abelian fields: "SU(2)" Yang-Mills field with a mass (Proca field) and the SU(2)Ă—\timesSU(2) Skyrme field. In both cases, as in general relativity, there are two branches of solutions, i.e., two black hole solutions with the same horizon radius. Masses of both black holes are always smaller than those in general relativity. A cusp structure in the mass-horizon radius (MgM_{g}-rhr_{h}) diagram, which is a typical symptom of stability change in catastrophe theory, does not appear in the Brans-Dicke frame but is found in the Einstein conformal frame. This suggests that catastrophe theory may be simply applied for a stability analysis as it is if we use the variables in the Einstein frame. We also discuss the effects of the Brans-Dicke scalar field on black hole structure.Comment: 31 pages, revtex, 21 figure

    Symmetry properties of the metric energy-momentum tensor in classical field theories and gravity

    Full text link
    We derive a generic identity which holds for the metric (i.e. variational) energy-momentum tensor under any field transformation in any generally covariant classical Lagrangian field theory. The identity determines the conditions under which a symmetry of the Lagrangian is also a symmetry of the energy-momentum tensor. It turns out that the stress tensor acquires the symmetry if the Lagrangian has the symmetry in a generic curved spacetime. In this sense a field theory in flat spacetime is not self-contained. When the identity is applied to the gauge invariant spin-two field in Minkowski space, we obtain an alternative and direct derivation of a known no-go theorem: a linear gauge invariant spin-2 field, which is dynamically equivalent to linearized General Relativity, cannot have a gauge invariant metric energy-momentum tensor. This implies that attempts to define the notion of gravitational energy density in terms of the metric energy--momentum tensor in a field-theoretical formulation of gravity must fail.Comment: Revised version to match the published version in Class. Quantum Gra

    Some aspects of the cosmological conformal equivalence between ``Jordan Frame'' and ``Einstein Frame''

    Full text link
    The conformal equivalence between Jordan frame and Einstein frame can be used in order to search for exact solutions in general theories of gravity in which scalar fields are minimally or nonminimally coupled with geometry. In the cosmological arena a relevant role is played by the time parameter in which dynamics is described. In this paper we discuss such issues considering also if cosmological Noether symmetries in the ``point--like'' Lagrangian are conformally preserved. Through this analysis and through also a careful analysis of the cosmological parameters \Omega and \Lambda, it is possible to contribute to the discussion on which is the physical system.Comment: 25 pages, latex, submitted to Class. Quantum Gra
    • …
    corecore