6,206 research outputs found

    An investigation of the compressive strength of PRD-49-3/Epoxy composites

    Get PDF
    The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported

    Fatigue of notched fiber composite laminates. Part 1: Analytical model

    Get PDF
    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given

    Initial Scientific Results from Phase-Referenced Astrometry of Sub-Arcsecond Binaries

    Get PDF
    The Palomar Testbed Interferometer has observed several binary star systems whose separations fall between the interferometric coherence length (a few hundredths of an arcsecond) and the typical atmospheric seeing limit of one arcsecond. Using phase-referencing techniques we measure the relative separations of the systems to precisions of a few tens of micro-arcseconds. We present the first scientific results of these observations, including the astrometric detection of the faint third stellar component of the kappa Pegasi system.Comment: 8 pages, 5 figures. To appear in SPIE conference proceedings volume 5491, "New Frontiers in Stellar Interferometery

    Distribution of the second virial coefficients of globular proteins

    Full text link
    George and Wilson [Acta. Cryst. D 50, 361 (1994)] looked at the distribution of values of the second virial coefficient of globular proteins, under the conditions at which they crystallise. They found the values to lie within a fairly narrow range. We have defined a simple model of a generic globular protein. We then generate a set of proteins by picking values for the parameters of the model from a probability distribution. At fixed solubility, this set of proteins is found to have values of the second virial coefficient that fall within a fairly narrow range. The shape of the probability distribution of the second virial coefficient is Gaussian because the second virial coefficient is a sum of contributions from different patches on the protein surface.Comment: 5 pages, including 3 figure

    VLA Observations of Candidate Supernova Remnants from the Clark Lake 30.9 MHz Galactic Plane Survey

    Get PDF
    We report the results of 1464 MHz continuum VLA observations of eight fields containing unidentified small-diameter objects associated with candidate supernova remnants from the Clark Lake 30.9 MHz galactic plane survey. The observations were made in the C configuration, giving a resolution of -12-20 arcsec, and a sensitivity of typically <0.5 mJy per beam. Polarization measurements were made as well. One of the 30.9 MHz candidates, G41.4+ 1.2, appears to be confirmed as a supernova remnant by our observations. Of the remaining seven fields observed, three were found to contain small-diameter objects which met some of the criteria for nonthermal origin, but will require further study to evaluate whether they are associated with the candidate supernova remnants. Two of the fields were found to contain groups of unresolved objects consistent with expectations for extragalactic background sources. In these cases the 30.9 MHz observations, which could not resolve the individual sources but would view them as a single extended source, may have mistakenly identified them as possible supernova remnants. Finally, two fields contained bright H II region

    Effect of Mn<sup>2+</sup> concentration in ZnS nanoparticles on photoluminescence and electron-spin- resonance spectra

    Get PDF
    Organically capped zinc sulfide nanoparticles doped with different manganese concentrations were prepared under similar conditions. Only the doping concentration was varied. Photoluminescence and electron-spin-resonance (ESR) investigations show some new results. At an optimum concentration of Mn doping a maximum in the photoluminescence is reached, whereas photoluminescence quenching occurs at higher concentrations. ESR investigations show that the spectra arise due to four different contributions of Mn ions, viz., (1) Mn(SI) in tetrahedral cationic substitution site with Td symmetry, (2) isolated Mn ions at the surface or interstitial locations (SII) with octahedral symmetry (Oh), (3) Mn-Mn dipolar interactions (SIII), and (4) exchange-coupled Mn clusters (SIV) in various proportions. Linewidths for all these (SI–SIV) differ from each other. Identification of these components suggests that SI may be responsible for the photoluminescence increase, whereas SII–SIV may be responsible for the luminescence quenching in nanoparticles

    Continuous slice functional calculus in quaternionic Hilbert spaces

    Full text link
    The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic CC^*--algebras and to define, on each of these CC^*--algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.Comment: 71 pages, some references added. Accepted for publication in Reviews in Mathematical Physic

    The afterglows of gamma-ray bursts

    Get PDF
    Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth

    The afterglows of gamma-ray bursts

    Get PDF
    Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long-duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth
    corecore