8,003 research outputs found
Drosophila RecQ4 Is Directly Involved in Both DNA Replication and the Response to UV Damage in S2 Cells.
The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD--consistent with the presence of DNA damage and increased apoptosis.Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or Hâ‚‚Oâ‚‚ treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific.Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways
Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition
We use laser light near resonant with an optical bound-to-bound transition to
shift the magnetic field at which a Feshbach resonance occurs. We operate in a
regime of large detuning and large laser intensity. This reduces the
light-induced atom-loss rate by one order of magnitude compared to our previous
experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are
performed in an optical lattice and include high-resolution spectroscopy of
excited molecular states, reported here. In addition, we give a detailed
account of a theoretical model that describes our experimental data
Herding, minority game, market clearing and efficient markets in a simple spin model framework
We present a novel approach towards the financial Ising model. Most studies utilize the model to find settings which generate returns closely mimicking the financial stylized fact such as fat tails, volatility clustering and persistence, and others. We tackle the model utility from the other side and look for the combination of parameters which yields return dynamics of the efficient market in the view of the efficient market hypothesis. Working with the Ising model, we are able to present nicely interpretable results as the model is based on only two parameters. Apart from showing the results of our simulation study, we offer a new interpretation of the Ising model parameters via inverse temperature and entropy. We show that in fact market frictions (to a certain level) and herding behavior of the market participants do not go against market efficiency but what is more, they are needed for the markets to be efficient
Precursor luminescence near the collapse of laser-induced bubbles in alkali-salt solutions
A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-induced bubbles in alkali-metal solutions. The timing of the emission from neutral Na, Li, and K atoms is strongly dependent on the salt concentration, which appears to result from resonant radiation trapping by the alkali atoms in the bubble. The alkali emission ends at the onset of the blackbody luminescence pulse at the bubble collapse point, and the duration of the blackbody pulse is found to be reduced by up to 30% as the alkali salt concentration is increased.http://deepblue.lib.umich.edu/bitstream/2027.42/84214/1/CAV2009-final166.pd
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate
Entanglement between stationary systems at remote locations is a key resource
for quantum networks. We report on the experimental generation of remote
entanglement between a single atom inside an optical cavity and a Bose-Einstein
condensate (BEC). To produce this, a single photon is created in the
atom-cavity system, thereby generating atom-photon entanglement. The photon is
transported to the BEC and converted into a collective excitation in the BEC,
thus establishing matter-matter entanglement. After a variable delay, this
entanglement is converted into photon-photon entanglement. The matter-matter
entanglement lifetime of 100 s exceeds the photon duration by two orders
of magnitude. The total fidelity of all concatenated operations is 95%. This
hybrid system opens up promising perspectives in the field of quantum
information
Effect of Pauli repulsion and transfer on fusion
The effect of the Pauli exclusion principle on the nucleus-nucleus bare
potential is studied using a new density-constrained extension of the
Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a
repulsion at short distance. The charge product dependence of this Pauli
repulsion is investigated. Dynamical effects are then included in the potential
with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In
particular, isovector contributions to this potential are used to investigate
the role of transfer on fusion, resulting in a lowering of the inner part of
the potential for systems with positive Q-value transfer channels.Comment: Proceedings of an invited talk given at FUSION17, Hobart, Tasmania,
AU (20-24 February, 2017
- …