62 research outputs found

    Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells

    Get PDF
    The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2

    Hybrid e-rehabilitation services: SMART-system for remote support of rehabilitation activities and services

    Get PDF
    One of the most effective solutions in medical rehabilitation assistance is remote patient / person-centered rehabilitation. Rehabilitation also needs effective methods for the β€œPhysical therapist – Patient – Multidisciplinary team” system, including the statistical processing of large volumes of data. Therefore, along with the traditional means of rehabilitation, as part of the β€œTransdisciplinary intelligent information and analytical system for the rehabilitation processes support in a pandemic (TISP)” in this paper, we introduce and define: the basic concepts of the new hybrid e-rehabilitation notion and its fundamental foundations; the formalization concept of the new Smart-system for remote support of rehabilitation activities and services; and the methodological foundations for the use of services (UkrVectores and vHealth) of the remote Patient / Person-centered Smart-system. The software implementation of the services of the Smart-system has been developed

    Morphological peculiarites and functional activity of adipose-derived mesenchimal stem cells during in vitro cultivation conditions

    Get PDF
    The studies were conducted on 2-3-months-old males of C57BL/6 mice weighing 20–24 g. Obtaining and cultivating of adipose-derived mesenchimal stem cells (AD MSCs) were carried out in a sterile laminar box with compliance of conditions of asepsis and antiseptics. AD MSCs of the 2, 4, 7 and 12 passages were analyzed. Morphometric analysis was performed using a light microscopy. Morphometric parameters such as cell and nucleus area or nuclear-cytoplasmic ratio (NCR) were calculated using the Axiovision light microscope (Carl Zeiss, Germany) and ImageJ 1.45 software. Trypan blue dye used for investigation of the viability of MSC. The morphological characteristics of mesenchymal stem cells from adipose tissue during the process of cultivation changes: at the first passages of cultivation, the cells are spindle-shaped with two, at least three, long long cytoplasmic processes, located bipolar. Near the nucleus the Golgi complex is clearly visible – a sign of active cells. At later passages cells have a small cytoplasmic processes and the bipolar arrangement of processes changes by stellar arrangement. Golgi complex is also clearly visualized. The indicator of the nuclear-cytoplasmic ratio in MSC from adipose tissue is significantly reduced at 7 passage to 0.2189 Β± 0.0122 (P < 0.01), and at 12 passage to 0.1111 Β± 0.0086 (P < 0.001) compared to the 2 passage. The coefficient of proliferation of MSC from adipose tissue is significantly reduced at 12th passage. The viability of mesenchymal stem cells from adipose tissue with an increasing of a number of passages significantly reduces and at the 12th passage of cultivation reaches 84,67 Β± 1,36* (P < 0.05). The content of apoptotic cells that exhibited sensitivity to serum-free significantly increased at 7 and 12 passages and was respectively 21.33 Β± 1.36 (P < 0.05) and 23.67 Β± 0.97% (P < 0.05)

    Вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ

    Get PDF
    The content of fatty acids in the lipids of mesenchymal stem cells of dog adipose tissue culture was studied. Mesenchymal stem cells of dog adipose tissue culture were obtained by culturing the primary material in a CO2 incubator with a content of 5 % CO2, at a temperature of 37 Β°C in DMEM medium with the addition of 10–15 % fetal bovine serum and 1 % antibiotic-antimycotic. When the confluency of the monolayer reached 70–80 %, the cells were transferred to a suspension and subcultivated in order to reduce the heterogeneity of the culture and obtain a sufficient amount of biological material. The lipids of the obtained stem cells were analyzed for the content of fatty acids by the method of thin-layer gas-liquid chromatography. Determination of the content of lipids of fatty acids in FSK of a cat was carried out by the Folch method. A mixture of fatty acid methyl esters was analyzed on a Trace GC Ultra gas chromatograph with a flame ionization detector on a capillary column SPTM –2560, 100 m x 0.25 mm ID, 0.20 ΞΌm film (Supelco). Identification of fatty acids was carried out using a standard sample of Supelco 37 Π‘omponent FAME Mix. Quantitative assessment of the LC spectrum was carried out by the method of normalization of the peak planes of methylated LC derivatives and their content was determined as a percentage of the total content of all LC. The conducted study of the content of fatty acids in lipids made it possible to reveal certain features of the lipid metabolism of mesenchymal stem cells cultured in dog adipose tissue. A high content of oleic acid, characteristic of cells resistant to apoptosis and with high proliferative potential, was determined; a high ratio of unsaturated linoleic to saturated stearic acid (Π‘18:1/Π‘18.0), which reflects the high activity of the stearoyl-coenzyme-desaturase enzyme and, indirectly, the active state of the Wnt/Ξ²-catenin signaling pathway; inability to lengthen the chain of saturated fatty acids; lack or low activity of de novo synthesis of omega-6 polyunsaturated fatty acids. 18 fatty acids were found in the composition of lipids of fetal stem cells of a cat, of the saturated ones - the most palmitic acid (33.70 Β± 0.02 %), of the monounsaturated ones – oleic acid (21.63 Β± 0.03 %), of the polyunsaturated ones – linoleic acid (6.45 Β± 0.07 %). The least amount of cis-,11,14-eicosadienoic acid (0.04 Β± 0.01 %) was found in the composition of cell lipids. The total amount of saturated fatty acids in dog mesenchymal stem cell lipids was 65.65 Β± 0.02 %), unsaturated fatty acids – 34.35 Β± 0.02 %. Monoene fatty acids were determined in the amount of 24.46 Β± 0.02 %, and polyene – 9.89 Β± 0.02 %. The ratio index of polyunsaturated fatty acids Ο‰ 3 to Ο‰ 6 is 0.40. Lipids of mesenchymal stem cells of adipose tissue culture were characterized by a lower content of monoene unsaturated fatty acids 24.46 Β± 0.02; (P < 0.05), with a higher content of Ο‰3 fatty acids 3.04 Β± 0.02 %; (P < 0.05), with a lower content of Ο‰6 fatty acids 6.86 Β± 0.02 %; (P < 0.05) in contrast to lipids of red bone marrow stem cells.ДослідТСно вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки. ΠœΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½Ρ– стовбурові ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки ΠΎΡ‚Ρ€ΠΈΠΌΡƒΠ²Π°Π»ΠΈ ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π² БО2 Ρ–Π½ΠΊΡƒΠ±Π°Ρ‚ΠΎΡ€Ρ– Π· вмістом 5 % БО2, Π·Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ 37 Β°Π‘ Ρƒ сСрСдовищі DMEM Π· додаванням 10–15 % Ρ„Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡ— сироватки Π²Π΅Π»ΠΈΠΊΠΎΡ— Ρ€ΠΎΠ³Π°Ρ‚ΠΎΡ— Ρ…ΡƒΠ΄ΠΎΠ±ΠΈ Ρ‚Π° 1 % Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠ°-Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΠΎΡ‚ΠΈΠΊΠ°. Коли ΠΊΠΎΠ½Ρ„Π»ΡŽΠ΅Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Ρƒ сягала 70–80 %, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΡƒΡΠΏΠ΅Π½Π·Ρ–ΡŽ Ρ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΡƒΠ±ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ зниТСння гСтСрогСнності ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ Ρ‚Π° отримання Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ. Π›Ρ–ΠΏΡ–Π΄ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½  Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΡƒΠ²Π°Π»ΠΈ Π½Π° вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚ΠΎΠ½ΠΊΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎΡ— Π³Π°Π·ΠΎΡ€Ρ–Π΄ΠΈΠ½Π½ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—. ВизначСння вмісту Π»Ρ–ΠΏΡ–Π΄Ρ–Π² ΠΆΠΈΡ€Π½ΠΈΡ… кислот ЀБК ΠΊΠΎΡ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π€ΠΎΠ»Ρ‡Π°. Π‘ΡƒΠΌΡ–Ρˆ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΈΡ… Π΅Ρ„Ρ–Ρ€Ρ–Π² ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π°Π½Π°Π»Ρ–Π·ΡƒΠ²Π°Π»ΠΈ Π½Π° Π³Π°Π·ΠΎΠ²ΠΎΠΌΡƒ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ– Trace GC Ultra Π· полум’яно-Ρ–ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π½Π° капілярній ΠΊΠΎΠ»ΠΎΠ½Ρ†Ρ– SPTM–2560, 100 m Γ— 0,25 mm ID, 0,20 ΞΌm film (Supelco). Π†Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ ΠΆΠΈΡ€Π½ΠΈΡ… кислот ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° допомогою стандартного Π·Ρ€Π°Π·ΠΊΠ° Supelco 37 Π‘omponent FAME Mix. ΠšΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρƒ ΠΎΡ†Ρ–Π½ΠΊΡƒ спСктру Π–Πš ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ нормування ΠΏΠ»ΠΎΡ‰ΠΈΠ½ ΠΏΡ–ΠΊΡ–Π² ΠΌΠ΅Ρ‚ΠΈΠ»ΡŒΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Π–Πš Ρ– Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Ρ—Ρ…Π½Ρ–ΠΉ вміст Ρƒ відсотках Π²Ρ–Π΄ сумарного вмісту усіх Π–Πš. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π΅ дослідТСння вмісту ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… Π΄Π°Π»ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ виявити ΠΏΠ΅Π²Π½Ρ– особливості Π»Ρ–ΠΏΡ–Π΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΡ–Π½Ρƒ ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ високий вміст ΠΎΠ»Π΅Ρ—Π½ΠΎΠ²ΠΎΡ— кислоти, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΠΉ для ΠΊΠ»Ρ–Ρ‚ΠΈΠ½, рСзистСнтних Π΄ΠΎ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ Ρ‚Π° Π· високим ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»ΠΎΠΌ; високС ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ нСнасичСної Π»Ρ–Π½ΠΎΠ»Π΅Π²ΠΎΡ— Π΄ΠΎ насичСної стСаринової кислоти (Π‘18:1/Π‘18.0), якС Π²Ρ–Π΄ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ” високу Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° стСарол-ΠΊΠΎΠ΅Π½Π·ΠΈΠΌ-дСсатурази Ρ‚Π° опосСрСдковано – Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ стан Wnt/Ξ²-ΠΊΠ°Ρ‚Π΅Π½Ρ–Π½ сигнального ΡˆΠ»ΡΡ…Ρƒ; Π½Π΅Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ подовТСння Π»Π°Π½Ρ†ΡŽΠ³Π° насичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот; Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π°Π±ΠΎ Π½ΠΈΠ·ΡŒΠΊΡƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ синтСзу de novo ΠΎΠΌΠ΅Π³Π°-6 полінСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот. Π£ складі Π»Ρ–ΠΏΡ–Π΄Ρ–Π² Ρ„Π΅Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΠΎΡ‚Π° виявлСно 18  ΠΆΠΈΡ€Π½ΠΈΡ… кислот, Π· насичСних – Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠ΅ ΠΏΠ°Π»ΡŒΠΌΡ–Ρ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти (33,70 Β± 0,02 %), Π· мононСнасичСних – ΠΎΠ»Π΅Ρ—Π½ΠΎΠ²ΠΎΡ— кислоти (21,63 Β± 0,03 %), Π· полінСнасичСних – Π»Ρ–Π½ΠΎΠ»Π΅Π²ΠΎΡ— кислоти (6,45 Β± 0,07 %). НаймСншС Ρƒ складі Π»Ρ–ΠΏΡ–Π΄Ρ–Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ виявлСно ціс-,11,14-Π΅ΠΉΠΊΠΎΠ·Π°Π΄Ρ–Ρ”Π½ΠΎΠ²ΠΎΡ— кислоти (0,04 Β± 0,01 %). Π‘ΡƒΠΌΠ°Ρ€Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ насичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ— стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ собаки становила 65,65Β± 0,02%), нСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот – 34,35 Β± 0,02 %. ΠœΠΎΠ½ΠΎΡ”Π½ΠΎΠ²Ρ– ΠΆΠΈΡ€Π½Ρ– кислоти Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρƒ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 24,46Β± 0,02%, Π° ΠΏΠΎΠ»Ρ–Ρ”Π½ΠΎΠ²Ρ– – 9,89Β± 0,02%. ІндСкс ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ полінСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот Ο‰ 3 Π΄ΠΎ Ο‰ 6 ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 0,40. Π›Ρ–ΠΏΡ–Π΄ΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½  ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ  Ρ…арактСризувалися Π½ΠΈΠΆΡ‡ΠΈΠΌ умістом ΠΌΠΎΠ½ΠΎΡ”Π½ΠΎΠ²ΠΈΡ… нСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот 24,46 Β± 0,02; (P < 0,05), Π±Ρ–Π»ΡŒΡˆΠΈΠΌ вмістом Ο‰3 ΠΆΠΈΡ€Π½ΠΈΡ… кислот 3,04 Β± 0,02 %; (P < 0,05), мСншим вмістом Ο‰6 ΠΆΠΈΡ€Π½ΠΈΡ… кислот 6,86 Β± 0,02 %; (P < 0,05) Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π°Π³Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°ΠΌ стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ Ρ‡Π΅Ρ€Π²ΠΎΠ½ΠΎΠ³ΠΎ кісткового ΠΌΠΎΠ·ΠΊΡƒ

    CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation

    Get PDF
    Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD
    • …
    corecore