195 research outputs found

    Predicted enhanced human propensity of current avian-like H1N1 swine influenza virus from China

    Get PDF
    Influenza A virus (IAV) subtypes against which little or no pre-existing immunity exists in humans represent a serious threat to global public health. Monitoring of IAV in animal hosts is essential for early and rapid detection of potential pandemic IAV strains to prevent their spread. Recently, the increased pandemic potential of the avian-like swine H1N1 IAV A/swine/Guangdong/104/2013 has been suggested. The virus is infectious in humans and the general population seems to lack neutralizing antibodies against this virus. Here we present an in silico analysis that shows a strong human propensity of this swine virus further confirming its pandemic potential. We suggest mutations which would further enhance its human propensity. We also propose conserved antigenic determinants which could serve as a component of a prepandemic vaccine. The bioinformatics tool, which can be used to further monitor the evolution of swine influenza viruses towards a pandemic virus, are described here and are made publically available (http://www.vin.bg.ac.rs/180/tools/iav-mon.php; http://www.biomedprotection.com/iav-mon.php)

    Comparative screening of the anti-oxidant and antimicrobial activities of Sempervivum marmoreum L. extracts obtained by various extraction techniques

    Get PDF
    This paper presents a comparative study of the anti-oxidant and anti-microbial activities, total phenolic compounds and total flavonoids in extracts obtained from houseleek (Sempervivum marmoreum L.) leaves by the classical (maceration), ultrasonic and Soxhlet extraction (CE, UE and SE, respectively). The extract obtained by the CE contained higher amounts of phenolic and flavonoid compounds and showed a better antioxidant activity than those obtained using other two techniques. All the extracts, independent of the extraction technique applied, showed antimicrobial activities against Aspergillus niger and Candida albicans only but not against the tested bacteria

    Cyclic Voltammetric Determination of Antioxidant Capacity of Cocoa Powder, Dark Chocolate and Milk Chocolate Samples: Correlation with Spectrophotometric Assays and Individual Phenolic Compounds

    Get PDF
    Phenolic antioxidants in cocoa powder, dark chocolate and milk chocolate samples are quantified electrochemically using cyclic voltammetry with a glassy carbon electrode. Cyclic voltammograms were recorded from 0 to 800 mV at a scan rate of 100 mV/s. Phenolics with an ortho-diphenol group show the first oxidation peak in the potential range between 370 and 460 mV (vs. Ag/AgCl) in 0.1 mol/L of the acetate buffer, pH=4. The first and third anodic current peaks, close to 670 mV, can be ascribed to the first and second oxidation of the catechin-type flavonoids that are present at a high concentration in samples. The second peak at around 560 mV can be ascribed to phenolic acids. Procyanidins B1, B2, B3 and B4 did not have any visible waves. Strong positive correlation was established between antioxidant activities deduced from cyclic voltammograms with those determined using spectrophotometric assays. HPLC method was used for the quantification of individual phenolic compounds

    Aromatic amino acid transporter AAT-9 of Caenorhabditis elegans localizes to neurons and muscle cells.

    Full text link
    The Caenorhabditis elegans genome encodes nine homologues of mammalian glycoprotein-associated amino acid transporters. Two of these C. elegans proteins (AAT-1 and AAT-3) have been shown to function as catalytic subunits (light chains) of heteromeric amino acid transporters. These proteins need to associate with a glycoprotein heavy chain subunit (ATG-2) to reach the cell surface in a manner similar to that of their mammalian homologues. AAT-1 and AAT-3 contain a cysteine residue in the second putative extracellular loop through which a disulfide bridge can form with a heavy chain. In contrast, six C. elegans members of this family (AAT-4 to AAT-9) lack such a cysteine residue. We show here that one of these transporter proteins, AAT-9, reaches the cell surface in Xenopus oocytes without an exogenous heavy chain and that it functions as an exchanger of aromatic amino acids. Two-electrode voltage clamp experiments demonstrate that AAT-9 displays a substrate-activated conductance. Immunofluorescence shows that it is expressed close to the pharyngeal bulbs within C. elegans neurons. The selective expression of an aat-9 promoter-green fluorescent protein construct in several neurons of this region and in wall muscle cells around the mouth supports and extends these localization data. Taken together, the results show that AAT-9 is expressed in excitable cells of the nematode head and pharynx in which it may provide a pathway for aromatic amino acid transport

    Modulation of CP2 Family Transcriptional Activity by CRTR-1 and Sumoylation

    Get PDF
    CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES) cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells
    • …
    corecore