2,230 research outputs found

    All pronouns are not acquired equally in Dutch: Elicitation of object and quantitative pronouns

    No full text
    This research reports the results of eliciting pronouns in two syntactic environments: Object pronouns and quantitative er (Q-er). Thus another type of language is added to the literature on subject and object clitic acquisition in the Romance languages (Jakubowicz et al., 1998; Hamann et al., 1996). Quantitative er is a unique pronoun in the Germanic languages; it has the same distribution as partitive clitics in Romance. Q-er is an N'-anaphor and occurs obligatorily with headless noun phrases with a numeral or weak quantifier. Q-er is licensed only when the context offers an antecedent; it binds an empty position in the NP. Data from typically-developing children aged 5;0-6;0 show that object and Q-er pronouns are not acquired equally; it is proposed that this is due to their different syntax. The use of Q-er involves more sophisticated syntactic knowledge: Q-er occurs at the left edge of the VP and binds an empty position in the NP, whereas object pronouns are simply stand-ins for full NPs and occur in the same position. These Dutch data reveal that pronouns are not used as exclusively as object clitics are in the Romance languages (Varlakosta, in prep.)

    'Nee, ze heeft er twee': Acquisition of the Dutch quantitative 'er'

    No full text
    We present the first study on the acquisition of the Dutch quantitative pronoun er in sentences such as de vrouw draagt er drie ‘the woman is carrying three.’ There is a large literature on Dutch children’s interpretation of pronouns and a few recent production studies, all specifically looking at 3rd person singular pronouns and the so-called Delay of Principle B effect (Coopmans & Philip, 1996; Koster, 1993; Spenader, Smits and Hendriks, 2009). However, no one has studied children’s use of quantitative er. Dutch is the only Germanic language with such a pronoun

    A techno-economic perspective on rigid and flexible perovskite solar modules

    Get PDF
    Perovskite solar cells have shown considerable developments in the last decade, and commercial applications are drawing closer. In this article, we present a techno-economic study of perovskite PV technologies. We compare published data on manufacturing costs of single-junction perovskite modules and find that they are dependent on the module design (rigid or flexible) and vary from 10 to almost 100 € per m2. We calculate the LCOE as a function of module efficiency and stability for a set of four module cost scenarios at 12.5, 25, 50, and 100 € per m2. The resulting LCOE varies from 4.3 to 25.5 ct kW−1 h−1 and shows low potential for immediate competition with crystalline silicon PV in the utility sector. Perovskite PV's competitive advantage lies in both lighter and less rigid modules, and in the development of tandem modules together with silicon. We hence extend the LCOE equation to highlight the benefit of producing flexible low-weight modules by roll-to-roll manufacturing, and modify the LCOE maps to showcase the benefits of tandem modules. Based on learning curve analyses applied to the CAPEX of single-junction and tandem modules, we develop three scenarios for the evolution of the LCOE of perovskite modules from 2025 to 2050. Under the optimistic scenarios, we find that the LCOE could reduce to 2.8 ct kW−1 h−1 by 2050.</p

    Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory

    Full text link
    In search of the potential realization of novel normal-state phases on the surface of Sr2RuO4 - those stemming from either topological bulk properties or the interplay between spin-orbit coupling (SO) and the broken symmetry of the surface - we revisit the electronic structure of the top-most layers by ARPES with improved data quality as well as ab-initio LDA slab calculations. We find that the current model of a single surface layer (\surd2x\surd2)R45{\deg} reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with LDA+SO slab calculations based on the LEED-determined surface crystal structure, reveal that (at a minimum) the sub-surface layer also undergoes a similar although weaker reconstruction. This points to a surface-to-bulk progression of the electronic states driven by structural instabilities, with no evidence for Dirac and Rashba-type states or surface magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    WDR5, BRCA1, and BARD1 Co-regulate the DNA Damage Response and Modulate the Mesenchymal-to-Epithelial Transition during Early Reprogramming.

    Get PDF
    Differentiated cells are epigenetically stable, but can be reprogrammed to pluripotency by expression of the OSKM transcription factors. Despite significant effort, relatively little is known about the cellular requirements for reprogramming and how they affect the properties of induced pluripotent stem cells. We have performed high-content screening with small interfering RNAs targeting 300 chromatin-associated factors and extracted colony-level quantitative features. This revealed five morphological phenotypes in early reprogramming, including one displaying large round colonies exhibiting an early block of reprogramming. Using RNA sequencing, we identified transcriptional changes associated with these phenotypes. Furthermore, double knockdown epistasis experiments revealed that BRCA1, BARD1, and WDR5 functionally interact and are required for the DNA damage response. In addition, the mesenchymal-to-epithelial transition is affected in Brca1, Bard1, and Wdr5 knockdowns. Our data provide a resource of chromatin-associated factors in early reprogramming and underline colony morphology as an important high-dimensional readout for reprogramming quality

    Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap

    Full text link
    We study Na2IrO3 by ARPES, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g manifold highlights the importance of structural distortions and spin-orbit coupling (SO) in driving the system closer to a Mott transition. We detect an insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
    • …
    corecore