55 research outputs found

    Whole Exome Sequencing Study of Parkinson Disease and Related Endophenotypes in the Italian Population

    Get PDF
    Parkinson Disease (PD) is a complex neurodegenerative disorder characterized by large genetic heterogeneity and missing heritability. Since the genetic background of PD can partly vary among ethnicities and neurological scales have been scarcely investigated in a PD setting, we performed an exploratory Whole Exome Sequencing (WES) analysis of 123 PD patients from mainland Italy, investigating scales assessing motor (UPDRS), cognitive (MoCA), and other non-motor symptoms (NMS). We performed variant prioritization, followed by targeted association testing of prioritized variants in 446 PD cases and 211 controls. Then we ran Exome-Wide Association Scans (EWAS) within sequenced PD cases (N = 113), testing both motor and non-motor PD endophenotypes, as well as their associations with Polygenic Risk Scores (PRS) influencing brain subcortical volumes. We identified a variant associated with PD, rs201330591 in GTF2H2 (5q13; alternative T allele: OR [CI] = 8.16[1.08; 61.52], FDR = 0.048), which was not replicated in an independent cohort of European ancestry (1,148 PD cases, 503 controls). In the EWAS, polygenic analyses revealed statistically significant multivariable associations of amygdala- [\u3b2(SE) = -0.039(0.013); FDR = 0.039] and caudate-PRS [0.043(0.013); 0.028] with motor symptoms. All subcortical PRSs in a multivariable model notably increased the variance explained in motor (adjusted-R2 = 38.6%), cognitive (32.2%) and other non-motor symptoms (28.9%), compared to baseline models (~20%). Although, the small sample size warrants further replications, these findings suggest shared genetic architecture between PD symptoms and subcortical structures, and provide interesting clues on PD genetic and neuroimaging features

    Apathy, but Not Depression, Reflects Inefficient Cognitive Strategies in Parkinson's Disease

    Get PDF
    The relationship between apathy, depression and cognitive impairment in Parkinson's disease (PD) is still controversial. The objective of this study is to investigate whether apathy and depression are associated with inefficient cognitive strategies in PD.In this prospective clinical cohort study conducted in a university-based clinical and research movement disorders center we studied 48 PD patients. Based on clinical evaluation, they were classified in two groups: PD with apathy (PD-A group, n = 23) and PD without apathy (PD-NA group, n = 25). Patients received clinical and neuropsychological evaluations. The clinical evaluation included: Apathy Evaluation Scale-patient version, Hamilton Depression Rating Scale-17 items, the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr staging system; the neuropsychological evaluation explored speed information processing, attention, working memory, executive function, learning abilities and memory, which included several measures of recall (immediate free, short delay free, long delay free and cued, and total recall).PD-A and PD-NA groups did not differ in age, disease duration, treatment, and motor condition, but differed in recall (p<0.001) and executive tasks (p<0.001). Immediate free recall had the highest predictive value for apathy (F = 10.94; p = 0.002). Depression and apathy had a weak correlation (Pearson index= 0.3; p<0.07), with three items of the depression scale correlating with apathy (Pearson index between .3 and.4; p<0.04). The depressed and non-depressed PD patients within the non-apathetic group did not differ.Apathy, but not depression, is associated with deficit in implementing efficient cognitive strategies. As the implementation of efficient strategies relies on the fronto-striatal circuit, we conclude that apathy, unlike depression, is an early expression of executive impairment in PD

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    Two novel POLG1 mutations in a patient with progressive external ophthalmoplegia, levodopa-responsive pseudo-orthostatic tremor and parkinsonism

    No full text
    Different mutations, or combinations of mutations, in POLG1, the gene encoding pol \u3b3A, the catalytic subunit of mitochondrial DNA polymerase, are associated with a spectrum of clinical presentations including autosomal dominant or recessive progressive external ophthalmoplegia (PEO), juvenile-onset ataxia and epilepsy, and Alpers-Huttenlocher syndrome. Parkinsonian features have been reported as a late complication of POLG1-associated dominant PEO. Good response to levodopa or dopamine agonists, reduced dopamine uptake in the corpus striatum and neuronal loss of the Substantia Nigra pars compacta have been documented in a few cases. Here we report two novel mutations in POLG1 in a compound heterozygous patient with autosomal recessive PEO, followed by pseudo-orthostatic tremor evolving into levodopa-responsive parkinsonism. These observations support the hypothesis that mtDNA dysfunction is engaged in the pathogenesis of idiopathic Parkinson's disease. \ua9 2008 Elsevier B.V. All rights reserved
    corecore