1,940 research outputs found
Self-Excitation and Feedback Cooling of an Isolated Proton
The first one-proton self-excited oscillator (SEO) and one-proton feedback
cooling are demonstrated. In a Penning trap with a large magnetic gradient, the
SEO frequency is resolved to the high precision needed to detect a one-proton
spin flip. This is after undamped magnetron motion is sideband-cooled to a 14
mK theoretical limit, and despite random frequency shifts (larger than those
from a spin flip) that take place every time sideband cooling is applied in the
gradient. The observations open a possible path towards a million-fold improved
comparison of the antiproton and proton magnetic moments
Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles
In our past experiments on a single electron and positron we measured the
cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the
ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later,
only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not
done before, a new and very different figure of merit for violation of CPT
symmetry, one similar to the widely recognized impressive limit |m_Kaon -
m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That
expression may be seen as comparing experimental relativistic masses of
particle states before and after the C, P, T operations had transformed
particle into antiparticle. Such a similar figure of merit for a non-composite
and quite different lepton, found by us from our Delta a = a^- - a^+ data, was
even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar
omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX
file, 5 pages, no figures, 16
Cavity Control of a Single-Electron Quantum Cyclotron:\\Measuring the Electron Magnetic Moment
Measurements with a one-electron quantum cyclotron determine the electron
magnetic moment, given by , and the fine structure
constant, . Brief
announcements of these measurements are supplemented here with a more complete
description of the one-electron quantum cyclotron and the new measurement
methods, a discussion of the cavity control of the radiation field, a summary
of the analysis of the measurements, and a fuller discussion of the
uncertainties
Theoretical energies of low-lying states of light helium-like ions
Rigorous quantum electrodynamical calculation is presented for energy levels
of the 1^1S, 2^1S, 2^3S, 2^1P_1, and 2^3P_{0,1,2} states of helium-like ions
with the nuclear charge Z=3...12. The calculational approach accounts for all
relativistic, quantum electrodynamical, and recoil effects up to orders
m\alpha^6 and m^2/M\alpha^5, thus advancing the previously reported theory of
light helium-like ions by one order in \alpha.Comment: 18 pages, 9 tables, 1 figure, with several misprints correcte
Organizational error management culture and its impact on performance: a two study replication
The authors argue that a high-organizational error management culture, conceptualized to include norms and common practices in organizations (e.g., communicating about errors, detecting, analyzing, and correcting errors quickly), is pivotal to the reduction of negative and the promotion of positive error consequences. Organizational error management culture was positively related to firm performance across 2 studies conducted in 2 different European countries. On the basis of quantitative and qualitative cross-sectional data from 65 Dutch organizations, Study 1 revealed that organizational error management culture was significantly correlated with both organizational goal achievement and an objective indicator of economic performance. This finding was confirmed in Study 2, using change-of-profitability data from 47 German organizations. The results suggest that organizations may want to introduce organizational error management as a way to boost firm performance
- …