236 research outputs found

    Lower limb joint angle variability and dimensionality are different in stairmill climbing and treadmill walking

    Get PDF
    The present study tested if the quadratic relationship which exists between stepping frequency and gait dynamics in walking can be generalized to stairmill climbing. To accomplish this, we investigated the joint angle dynamics and variability during continuous stairmill climbing at stepping frequencies both above and below the preferred stepping frequency (PSF). Nine subjects performed stairmill climbing at 80, 90, 100, 110 and 120% PSF and treadmill walking at preferred walking speed during which sagittal hip, knee and ankle angles were extracted. Joint angle dynamics were quantified by the largest Lyapunov exponent (LyE) and correlation dimension (CoD). Joint angle variability was estimated by the mean ensemble standard deviation (meanSD). MeanSD and CoD for all joints were significantly higher during stairmill climbing but there were no task differences in LyE. Changes in stepping frequency had only limited effect on joint angle variability and did not affect joint angle dynamics. Thus, we concluded that the quadratic relationship between stepping frequency and gait dynamics observed in walking is not present in stairmill climbing based on the investigated parameters

    Associations of lifestyle and vascular risk factors with Alzheimer\u27s brain biomarker changes during middle age: a 3 year longitudinal study in the broader New York City area

    Full text link
    Objective To investigate the associations between lifestyle and vascular risk factors and changes in Alzheimer’s disease (AD) biomarkers (beta-amyloid load via 11C-PiB PET, glucose metabolism via 18F-FDG PET and neurodegeneration via structural MRI) and global cognition in middle-aged asymptomatic participants at risk for AD. Design Prospective, longitudinal. Setting The study was conducted at New York University Langone/Weill Cornell Medical Centres in New York City. Participants Seventy cognitively normal participants from multiple community sources, aged 30–60 years with lifestyle measures (diet, intellectual activity and physical activity), vascular risk measures and two imaging biomarkers visits over at least 2 years, were included in the study. Outcome measures We examined MRI-based cortical thickness, fluoro-deoxy-glucose (FDG) glucose metabolism and PiB beta-amyloid in AD-vulnerable regions. A global cognitive z-score served as our summary cognition measure. We used regression change models to investigate the associations of clinical, lifestyle and vascular risk measures with changes in AD biomarkers and global cognition. Results Diet influenced changes in glucose metabolism, but not amyloid or cortical thickness changes. With and without accounting for demographic measures, vascular risk and baseline FDG measures, lower adherence to a Mediterranean-style diet was associated with faster rates of FDG decline in the posterior cingulate cortex (p≤0.05) and marginally in the frontal cortex (p=0.07). None of the other lifestyle variables or vascular measures showed associations with AD biomarker changes. Higher baseline plasma homocysteine was associated with faster rates of decline in global cognition, with and without accounting for lifestyle and biomarker measures (p=0.048). None of the lifestyle variables were associated with cognition. Conclusions Diet influenced brain glucose metabolism in middle-aged participants, while plasma homocysteine explained variability in cognitive performance. These findings suggest that these modifiable risk factors affect AD risk through different pathways and support further investigation of risk reduction strategies in midlife

    Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation

    Get PDF
    BACKGROUND: Coronary atherosclerosis and its thrombotic complications are the major cause of mortality and morbidity throughout the industrialized world. Thrombosis on disrupted atherosclerotic plaques plays a key role in the onset of acute coronary syndromes. Macrophages density is one of the most critical compositions of plaque in both plaque vulnerability and thrombogenicity upon rupture. It has been shown that macrophages have a high uptake of (18)F-FDG (FDG). We studied the correlation of FDG uptake with histopathological macrophage accumulation in atherosclerotic plaques in a rabbit model. METHODS: Atherosclerosis was induced in rabbits (n = 6) by a combination of atherogenic diet and balloon denudation of the aorta. PET imaging was performed at baseline and 2 months after atherogenic diet and coregistered with magnetic resonance (MR) imaging. Normal (n = 3) rabbits served as controls. FDG uptake by the thoracic aorta was expressed as concentration (μCi/ml) and the ratio of aortic uptake-to-blood radioactivity. FDG uptake and RAM-11 antibody positive areas were analyzed in descending aorta. RESULTS: Atherosclerotic aortas showed significantly higher uptake of FDG than normal aortas. The correlation of aortic FDG uptake with macrophage areas assessed by histopathology was statistically significant although it was not high (r = 0.48, p < 0.0001). When uptake was expressed as the ratio of aortic uptake-to-blood activity, it correlated better (r = 0.80, p < 0.0001) with the macrophage areas, due to the correction for residual blood FDG activity. CONCLUSION: PET FDG activity correlated with macrophage content within aortic atherosclerosis. This imaging approach might serve as a useful non-invasive imaging technique and potentially permit monitoring of relative changes in inflammation within the atherosclerotic lesion

    Enhanced anti-tumor effects of combined MDR1 RNA interference and human sodium/iodide symporter (NIS) radioiodine gene therapy using an adenoviral system in a colon cancer model

    Get PDF
    Using an adenoviral system as a delivery mediator of therapeutic gene, we investigated the therapeutic effects of the use of combined MDR1 shRNA and human NIS (hNIS) radioiodine gene therapy in a mouse colon xenograft model. In vitro uptake of Tc-99m sestamibi was increased approximately two-fold in cells infected with an adenovirus vector that expressed MDR1 shRNA (Ad-shMDR1) and I-125 uptake was 25-fold higher in cells infected with an adenovirus vector that expressed human NIS (Ad-hNIS) as compared with control cells. As compared with doxorubicin or I-131 treatment alone, the combination of doxorubicin and I-131 resulted in enhanced cytotoxicity for both Ad-shMDR1- and Ad-hNIS-infected cells, but not for control cells. In vivo uptake of Tc-99m sestamibi and Tc-99m pertechnetate was twofold and 10-fold higher for Ad-shMDR1 and Ad-hNIS-infected tumors as compared with tumors infected with a control adenovirus construct that expressed β-galactrosidase (Ad-LacZ), respectively. In mice treated with either doxorubicin or I-131 alone, there was a slight delay in tumor growth as compared to mice treated with Ad-LacZ. However, combination therapy with doxorubicin and I-131 induced further significant inhibition of tumor growth as compared with mice treated with Ad-LacZ. We have shown successful therapeutic efficacy of combined MDR shRNA and hNIS radioiodine gene therapy using an adenoviral vector system in a mouse colon cancer model. Adenovirus-mediated cancer gene therapy using MDR1 shRNA and hNIS would be a useful tool for the treatment of cancer cells expressing multi-drug resistant genes

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p
    corecore