1,407 research outputs found

    Electronic transport through nuclear-spin-polarization-induced quantum wire

    Full text link
    Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.Comment: 5 pages, 4 figure

    Quantum information processing based on P-31 nuclear spin qubits in a quasi-one-dimensional Si-28 nanowire

    Full text link
    We suggest a new method of quantum information processing based on the precise placing of P-31 isotope atoms in a quasi-one-dimensional Si-28 nanowire using isotope engineering and neutron-transmutation doping of the grown structures. In our structure, interqubit entanglement is based on the indirect interaction of P-31 nuclear spins with electrons localized in a nanowire. This allows one to control the coupling between distant qubits and between qubits separated by non-qubit neighboring nodes. The suggested method enables one to fabricate structures using present-day nanolithography. Numerical estimates show the feasibility of the proposed device and method of operation.Comment: 7 pages, 4 figure

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Nucleus-mediated spin-flip transitions in GaAs quantum dots

    Full text link
    Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the possibilities to manipulate spin states in the dots. We present here estimations of inelastic spin-flip rates mediated by hyperfine interaction with nuclei. Under general assumptions the nucleus mediated rate is proportional to the phonon relaxation rate for the corresponding non-spin-flip transitions. The rate can be accelerated in the vicinity of a singlet-triplet excited states crossing. The small proportionality coefficient depends inversely on the number of nuclei in the quantum dot. We compare our results with known mechanisms of spin-flip in GaAsGaAs quantum dot.Comment: RevTex 4 pages, 1 figure, submitted to Phys. Rev.

    Bac-pool Sequencing And Assembly Of 19 Mb Of The Complex Sugarcane Genome

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains 55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of >= 20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is similar to 19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.7[FAPESP - 10/50114-4]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a S-2DEG-S structure

    Full text link
    We analyze new spin effects in current-carrying state of superconductor-2D electron gas-superconductor (S-2DEG-S) device with spin-polarized nuclei in 2DEG region. The hyperfine interaction of 2D electrons with nuclear spins, described by the effective magnetic field B, produces Zeeman splitting of Andreev levels without orbital effects, that leads to the interference pattern of supercurrent oscillations over B. The spin-orbit effects in 2DEG cause strongly anisotropic dependence of the Josephson current on the direction of B, which may be used as a probe for the spin-orbit interaction intensity. Under certain conditions, the system reveals the properties of pi-junction.Comment: 4 pages, 4 figure

    Algumas espécies coprófilas de Psilocybe (Strophariaceae) do Estado de Pernambuco, Brasil

    Get PDF
    Coprophilous species Psilocybe argentina, P. pegleriana and P. cubensis are reported for the first time for Northeast Brazil. The last one is a hallucinogenic mushroom. Descriptions, discussions and drawings of the species are provided.As espécies coprófilas Psilocybe argentina, P. pegleriana e P. cubensis são referidas pela primeira vez para o Nordeste Brasileiro, sendo esta última uma espécie de cogumelo alucinógeno. Descrições, discussões e desenhos das espécies são fornecidos

    Swimming into peptidomimetic chemical space using pepMMsMIMIC

    Get PDF
    pepMMsMIMIC is a novel web-oriented peptidomimetic compound virtual screening tool based on a multi-conformers three-dimensional (3D)-similarity search strategy. Key to the development of pepMMsMIMIC has been the creation of a library of 17 million conformers calculated from 3.9 million commercially available chemicals collected in the MMsINC® database. Using as input the 3D structure of a peptide bound to a protein, pepMMsMIMIC suggests which chemical structures are able to mimic the protein–protein recognition of this natural peptide using both pharmacophore and shape similarity techniques. We hope that the accessibility of pepMMsMIMIC (freely available at http://mms.dsfarm.unipd.it/pepMMsMIMIC) will encourage medicinal chemists to de-peptidize protein–protein recognition processes of biological interest, thus increasing the potential of in silico peptidomimetic compound screening of known small molecules to expedite drug development
    • …
    corecore