72 research outputs found

    Growth and structure analysis of tungsten oxide nanorods using environmental TEM

    Get PDF
    WO3 nanorods targeted for applications in electric devices were grown from a tungsten wire heated in an oxygen atmosphere inside an environmental transmission electron microscope, which allowed the growth process to be observed to reveal the growth mechanism of the WO3 nanorods. The initial growth of the nanorods did not consist of tungsten oxide but rather crystal tungsten. The formed crystal tungsten nanorods were then oxidized, resulting in the formation of the tungsten oxide nanorods. Furthermore, it is expected that the nanorods grew through cracks in the natural surface oxide layer on the tungsten wire

    Probing Nucleation Mechanism of Self-Catalyzed InN Nanostructures

    Get PDF
    The nucleation and evolution of InN nanowires in a self-catalyzed growth process have been investigated to probe the microscopic growth mechanism of the self-catalysis and a model is proposed for high pressure growth window at ~760 Torr. In the initial stage of the growth, amorphous InNx microparticles of cone shape in liquid phase form with assistance of an InNx wetting layer on the substrate. InN crystallites form inside the cone and serve as the seeds for one-dimensional growth along the favorable [0001] orientation, resulting in single-crystalline InN nanowire bundles protruding out from the cones. An amorphous InNx sheath around the faucet tip serves as the interface between growing InN nanowires and the incoming vapors of indium and nitrogen and supports continuous growth of InN nanowires in a similar way to the oxide sheath in the oxide-assisted growth of other semiconductor nanowires. Other InN 1D nanostructures, such as belts and tubes, can be obtained by varying the InN crystallites nucleation and initiation process

    Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Get PDF
    We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation

    Investigation of Electron Transport Through Alkanedithoil of Functionalized Zn3 P2 Nanowires for Hydrogen Production

    No full text
    Surface modified Zn3 P2 nanowires samples using alkanedithiol groups with different alkyl chain length were tested for hydrogen production. 1, 3-PDT exhibits the highest hydrogen production rate as 7288 ± 204 umol/h/g, which is 4 and 63 times higher than 1, 4-BDT and 1, 12-DDT respectively. The distance between photogenerated sites on Zn3 P2 nanowires and top molecule of alkanedithiol groups affects hydrogen reduction activity. Hydrogen production rate depends on electron transfer rate and tunneling rate. Mechanism explained gives a comprehensive perspective on how to optimize the structure of the Zn3 P2 nanowires and maximize the hydrogen reduction activit
    corecore