76 research outputs found

    STUDY OF CESIUM SORPTION BY IRON AND NICKEL FERROCYANIDES

    Full text link
    Sorption of cesium on four commercially available iron and nickel ferrocyanides was studied in this work.It was shown that these ferrocyanides adsorb cesium at a wide pH range (0.5 – 12) with distribution coefficient of approximately 105 L kg-1

    SNP-Based Chromosomal Microarray Analysis for Detecting DNA Copy Number Variations in Fetuses with a Thickened Nuchal Fold

    Get PDF
    The aim of the study was to assess the diagnostic potential of SNP-based chromosomal microarray analysis for detecting pathogenic copies number variations (CNVs) in fetuses with a normal karyotype, in which an increase in the nuchal translucence of >2.5 mm was detected by ultrasound at a gestational age of 11 weeks to 13 weeks 6 days. MATERIALS AND METHODS: The study included 225 pregnant women who underwent invasive prenatal diagnostic procedures following the detection of an isolated thickening of the fetal nuchal fold. The fetal material obtained was examined using a cytogenetic test; if a normal karyotype was confirmed, chromosomal microarray analysis was performed as a second-line test. RESULTS: Pathogenic CNVs were detected in 22 of 225 fetuses (9.8%) with a normal karyotype. Of these 22 fetuses, pathogenic CNVs not classified as syndromes were detected in 14 cases (63.6%), and those previously described as syndromes — in 8 cases (36.4%). In 9 fetuses (41%), CNVs in two non-homologous chromosomes were determined; these findings indicated a high likelihood of carrying balanced translocations in the parents. Indeed, when analyzing the parent’s karyotype, in 8 out of 9 couples, balanced translocations were found in one of the parents. CONCLUSION: Using chromosomal microarray analysis in fetuses with a thickened nuchal fold makes it possible to increase the ability to detect chromosomal imbalances, including those caused by pathological meiotic segregation of parental reciprocal translocation

    Mutations in the <i>A34R</i> gene increase the immunogenicity of vaccinia virus

    Get PDF
    Vaccination is the most simple and reliable approach of protection to virus infections. The most effective agents are live vaccines, usually low-virulence organisms for humans and closely related to pathogenic viruses or attenuated as a result of mutations/deletions in the genome of pathogenic virus. Smallpox vaccination with live vaccinia virus (VACV) closely related to smallpox virus played a key role in the success of the global smallpox eradication program carried out under the World Health Organization auspices. As a result of the WHO decision as of 1980 to stop smallpox vaccination, humankind has lost immunity not only to smallpox, but also to other zoonotic, orthopoxviruscaused human infections. This new situation allows orthopoxviruses to circulate in the human population and, as a consequence, to alter several established concepts of the ecology and range of sensitive hosts for various orthopoxvirus species. Classic VACV-based live vaccine for vaccination against orthopoxvirus infections is out of the question, because it can cause severe side effects. Therefore, the development of new safe vaccines against orthopoxviral infections of humans and animals is an important problem. VACV attenuation by modern approaches carried out by targeted inactivation of certain virus genes and usually leads to a decrease in the effectiveness of VACV in vivo propagation. As a result, it can cause a diminishing of the immune response after administration of attenuated virus to patients at standard doses. The gene for thymidine kinase is frequently used for insertion/inactivation of foreign genes and it causes virus attenuation. In this research, the effect of the introduction of two point mutations into the A34R gene of attenuated strain LIVP-GFP (ТК–), which increase the yield of extracellular enveloped virions (EEV), on the pathogenicity and immunogenicity of VACV LIVP-GFP-A34R administered intranasally to laboratory mice were studied. It was shown that increase in EEV production by recombinant strain VACV LIVP-GFP-A34R does not change the attenuated phenotype characteristic of the parental strain LIVP-GFP, but causes a significantly larger production of VACV-specific antibodies

    Route-coupled pathogenicity and immunogenicity of vaccinia virus variant inoculated mice

    Get PDF
    Vaccinia virus had played a key role in the global smallpox eradication. However, in case of mass vaccination with various Vaccinia virus strains severe side effects were revealed sometimes ending up with lethal outcomes, especially in immunocompromised humans. Hence, in 1980 the World Health Organization recommended to cancel smallpox vaccination after declaring about smallpox eradication. Over the last 40 years, human population virtually lost immunity not only against smallpox, but also against other zoonotic orthopoxvirus infections, such as monkeypox, cowpox, buffalopox, and camelpox. All of them pose a represent increasing threat to human health and heighten a risk of emerging highly contagious viruses due to natural evolution of previous zoonotic orthopoxviruses. In order to prevent development of small outbreaks into spreading epidemics and, thus, to decrease a risk of emergence due to natural evolution of highly pathogenic for humans orthopoxviruses, efforts should be applied to develop safe new generation live vaccines based on Vaccinia virus with target virulence genes inactivation. These strains should be examined in laboratory animal models inoculated via different routes. Currently, Vaccinia virus often becomes attenuated to create live recombinant vaccines due to inserting target DNA sequences into the virus virulence genes resulting in their inactivation. Vaccinia virus strain LIVP used in the Russian Federation as smallpox vaccine as well as derivative attenuated variant LIVP-GFP created by using genetic engineering methods with inactivating its thymidine kinase gene were examined. Such viruses were intracerebrally inoculated into suckling mice at doses of 101 or 102 PFU/animal for neurovirulence assessment. Adult mice were infected intranasally, subcutaneously or intradermally at doses of 107 or 108 PFU/animal and clinical manifestations were analyzed for 14 days. On the 28th day after the onset, blood serum samples were collected from individual mice to measure virus specific antibody level by using ELISA. It was shown that recombinant Vaccinia virus strain LIVP-GFP displayed markedly lowered neurovirulence and pathogenicity for mice as compared to parental LIVP. Finally, intradermal route turned out to demonstrate the most safe and effective profile for immunization with both examined Vaccinia virus strains

    Features of Photosynthesis in Haloxylon Species of Chenopodiaceae that are Dominant Plants in Central Asian deserts

    Full text link
    Haloxylon aphyllum and H. persicum of Chenopodiaceae are dominant plants in the continental deserts of the Asian Irano-Turanian region. The photosynthetic organs, assimilating shoots and leaf-like cotyledons of these two species were studied to characterize their photosynthetic types. 13C/12C isotope ratios, the cellular anatomy of assimilating organs, primary photosynthetic products, and activities of carbon metabolism enzymes, RUBP carboxylase, PEP carboxylase, malic enzymes, and aspartate aminotransferase, indicate different pathways of CO~2 fixation in the photosynthetic organs. Assimilating shoots had attributes of the C4 photosynthesis entirely, while cotyledons lack Kranz-anatomy and incorporated CO2 via C3 photosynthesis. Cotyledons and seeds had lower δ13C values compared to shoots, consistent with the contribution of C3-like CO2 assimilation. Two pathways of carbon donation to the C3 cycle via decarboxylation of C4 acids in bundle sheath cells are suggested to occur in shoots of Haloxylon. The primary photosynthetic product malate can be utilized through NADP+-malic enzyme which occurs in high activity. NAD+-malic enzyme may contribute to C4 photosynthesis (some aspartate is formed as an initial product, the bundle sheath chloroplasts have some grana, and NAD+-malic enzyme is found in bundle sheath cells of shoots, all criteria for NAD+-malic enzyme type photosynthesis). We propose that organ diversity of CO2 fixation pathway in Haloxylon species is an important factor for their growth, survival and reproduction in continental climate deserts.The study was supported in part by a Civilian Research and Development Foundation Grant RB1-264 to V.P., E.A., E.V., G.E., and M.K., a NATO Collaborative Research Grant 970588 to C.C.B., and National Science Foundation Grant IBN 9317756 to G.E.E. V.I. Pyankov would like to thank CIES, Washington for a Fulbright Scholar Research Fellowship and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens for provision of facilities during part of the work

    Моделирование снегонакопления и снеготаяния в бассейне р. Кама с применением данных глобальных моделей прогноза погоды

    Get PDF
    Currently, the improvement of numerical models of weather forecasting allows using them for hydrological problems, including calculations of snow water equivalent  (SWE) or snow storage. In this paper, we discuss the applicability of daily precipitation forecasts for three global atmospheric models: GFS (USA), GEM (Canada) and PL-AV (Russia) for calculating snow storage (SWE) in the Kama river basin for the cold season of 2017–2018. As the main components of the balance of snow storages the following parameters were taken into account: precipitation (with regard for the phase); snow melting during thaws; evaporation from the surface of the snow cover; interception of solid precipitation by forest vegetation. The calculation of snow accumulation and melting was based on empirical methods and performed with the GIS technologies. The degree-day factor was used to calculate snowmelt intensity, and snow sublimation was estimated by P.P. Kuz’min formula. The accuracy of numerical precipitation forecasts was estimated by comparing the results with the data of 101 weather stations. Materials of 40 field and 27 forest snow-measuring routes were taken into account to assess the reliability of the calculation of snow storages (SWE). During the snowmelt period, the part of the snow-covered area of the basin was also calculated using satellite images of Terra/Aqua MODIS on the basis of the NDFSI index. The most important result is that under conditions of 2017/18 the mean square error of calculating the maximum snow storage by the GFS, GEM and PL-AB models was less than 25% of its measured values. It is difficult to determine which model provides the maximum accuracy of the snow storage calculation since each one has individual limitations. According to the PL-AV model, the mean square error of snow storage calculation was minimal, but there was a significant underestimation of snow accumulation in the mountainous part of the basin. According to the GEM model, snow storages were overestimated by 10–25%. When calculating with use of the GFS model data, a lot of local maximums and minimums are detected in the field of snow storages, which are not confirmed by the data of weather stations. The main sources of uncertainty in the calculation are possible systematic errors in the numerical forecasts of precipitation, as well as the empirical coefficients used in the calculation of the intensity of snowmelt and evaporation from the snow cover surface.На примере холодного периода 2017/18  г. выполнено моделирование формирования и таяния снежного покрова в бассейне р.  Кама с применением выходных данных глобальных моделей прогноза погоды GFS (США), GEM (Канада) и ПЛ-АВ (Россия). Валидация результатов проведена по данным 40 полевых и 27 лесных снегомерных маршрутов, а в весенний период – и по спутниковым снимкам MODIS. Ошибка расчёта снегозапасов по данным всех трёх моделей не превысила 25% фактических значений

    A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” Vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II)

    Get PDF
    Vaccination of the population is one of the most effective countermeasures in responding to the pandemic caused by novel coronavirus infection. Therefore, scientists all over the world have been working to develop effective and safe vaccines. We have developed a synthetic peptide vaccine, EpiVacCorona, against novel SARS-CoV-2 coronavirus, which is a suspension for intramuscular administration containing a composition of chemically synthesized peptide immunogens of the S protein of SARS-CoV-2 coronavirus conjugated to a carrier protein and adsorbed on aluminum hydroxide. Phase I–II clinical trials of the vaccine have started that consist of two stages: Stage 1 is an open study of the safety, reactogenicity, and immunological activity of the vaccine with the involvement of 14 volunteers aged 18–30 years; Stage 2 is a single blind, comparative, randomized placebo-controlled study with the involvement of 86 volunteers. The study involved volunteers aged 18–60 years; the vaccine was injected intramuscularly twice, spaced 21 days apart between injections. All local reactions in response to vaccine administration were mild, such as a short-term pain at the injection site. There were no signs of development of local or systemic adverse reactions. The two-dose vaccination scheme induced the production of antibodies, specific to the antigens that make up the vaccine, in 100% of the volunteers. Seroconversion with a neutralizing antibody titer ≥ 1:20 was reported in 100% of the volunteers 21 days following the second immunization dose. No seroconversion was reported in the groups of volunteers vaccinated with a placebo. The peptide-based EpiVacCorona Vaccine has low reactogenicity and is a safe, immunogenic product. Clinical Trials Identifier: NCT04527575
    corecore