10,569 research outputs found

    Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Get PDF
    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds

    Machine Induced Background in the Low Luminosity Insertions of the LHC

    Get PDF
    The effect of the machine induced background is studied for the low luminosity insertions of the LHC. Estimations for the fluxes of the secondary particles, induced by the proton losses in the LHC, are presented for several running conditions of the collider. The formation of the background in the machine structure is discussed

    Terrestrial carbon sinks for the United States Predicted from MODIS satellite data and ecosystem modeling

    Full text link
    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of the conterminous United States over the period 2001-04. Predicted net ecosystem production (NEP) flux for atmospheric CO2 in the United States was estimated as annual net sink of about +0.2 Pg C in 2004. Regional climate patterns were reflected in the predicted annual NEP flux from the model, which showed extensive carbon sinks in ecosystems of the southern and eastern regions in 2003-04, and major carbon source fluxes from ecosystems in the Rocky Mountain and Pacific Northwest regions in 2003-04. As demonstrated through tower site comparisons, net primary production (NPP) modeled with monthly MODIS enhanced vegetation index (EVI) inputs closely resembles both the measured high- and low-season carbon fluxes. Modeling results suggest that the capacity of the NASA Carnegie Ames Stanford Approach (CASA) model to use 8-km resolution MODIS EVI data to predict peak growing season uptake rates of CO2 in irrigated croplands and moist temperate forests is strong

    Effect of well-width on the electro-optical properties of a quantum well

    Full text link
    We record photoreflectance from Ge/GeSi modulation doped quantum wells possessing 10410^4 V/cm perpendicular electric fields. Qualitatively very different spectra are obtained from samples of well-width 100 \AA and 250 \AA. Comparing the wavefunctions calculated from an 8×88 \times 8 \textbf{k.p} theory, we find that while they remain confined in the narrower 100 \AA QW, the electric field causes them to tunnel into the forbidden gap in the 250 \AA\ well. This implies that the samples should show a transition from the quantum confined Franz-Keldysh effect to the bulk-like Franz-Keldysh effect. Close to the band-edge where Franz-Keldysh effects are important, simulated photoreflectance spectra reproduce the essential features of the experiment, without any adjustable parameters.Comment: 8 pages, 8 figures. Submitted to Phys. Rev.

    Exploring inside-out Doppler tomography: magnetic cataclysmic variables

    Get PDF
    Context. Doppler tomography of magnetic cataclysmic variables is a valuable tool for the interpretation of the complex spectroscopic emission line profiles observed for these systems

    Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback

    Full text link
    In present paper we discuss the control of complex spatio-temporal dynamics in a {spatially extended} non-linear system (fluid model of Pierce diode) based on the concepts of controlling chaos in the systems with few degrees of freedom. A presented method is connected with stabilization of unstable homogeneous equilibrium state and the unstable spatio-temporal periodical states analogous to unstable periodic orbits of chaotic dynamics of the systems with few degrees of freedom. We show that this method is effective and allows to achieve desired regular dynamics chosen from a number of possible in the considered system.Comment: 12 pages, 12 figure
    corecore