2,668 research outputs found
Dissipative quantum disordered models
This article reviews recent studies of mean-field and one dimensional quantum
disordered spin systems coupled to different types of dissipative environments.
The main issues discussed are: (i) The real-time dynamics in the glassy phase
and how they compare to the behaviour of the same models in their classical
limit. (ii) The phase transition separating the ordered -- glassy -- phase from
the disordered phase that, for some long-range interactions, is of second order
at high temperatures and of first order close to the quantum critical point
(similarly to what has been observed in random dipolar magnets). (iii) The
static properties of the Griffiths phase in random Ising chains. (iv) The
dependence of all these properties on the environment. The analytic and numeric
techniques used to derive these results are briefly mentioned.Comment: Contribution to the 12th International Conference on Recent Progress
in Many-Body Theories, Santa Fe, New Mexico, USA, August 2004; 10 pages no
fig
Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20
We report on a ternary intermetallic compound, "YMn2Zn20", comprising a
pyrochlore lattice made of Mn atoms. A series of In-doped single crystals
undergo no magnetic long-range order down to 0.4 K, in spite of the fact that
the Mn atom carries a local magnetic moment at high temperatures, showing
Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions
at approximately 10 K due to a disorder arising from the substitution, while,
with decreasing In content, the spin-glass transition temperature is reduced to
1 K. Then, heat capacity divided by temperature approaches a large value of 280
mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction
electrons. This heavy-fermion-like behavior is not induced by the Kondo effect
as in ordinary f-electron compounds, but by an alternative mechanism related to
the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and
LiV2O4, which may allow spin entropy to survive down to low temperatures and to
couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres
Estrogens promote misfolded proinsulin degradation to protect insulin production and delay diabetes
Summary: Conjugated estrogens (CE) delay the onset of type 2 diabetes (T2D) in postmenopausal women, but the mechanism is unclear. In T2D, the endoplasmic reticulum (ER) fails to promote proinsulin folding and, in failing to do so, promotes ER stress and β cell dysfunction. We show that CE prevent insulin-deficient diabetes in male and in female Akita mice using a model of misfolded proinsulin. CE stabilize the ER-associated protein degradation (ERAD) system and promote misfolded proinsulin proteasomal degradation. This involves activation of nuclear and membrane estrogen receptor-α (ERα), promoting transcriptional repression and proteasomal degradation of the ubiquitin-conjugating enzyme and ERAD degrader, UBC6e. The selective ERα modulator bazedoxifene mimics CE protection of β cells in females but not in males. : Estrogens prevent diabetes in women, but the mechanism is poorly understood. Xu et al. report that estrogens activate the endoplasmic-reticulum-associated protein degradation pathway, which promotes misfolded proinsulin degradation, suppresses endoplasmic reticulum stress, and protects insulin secretion in mice and in human pancreatic β cells. Keywords: estrogens, beta cell, islet, endoplasmic reticulum stress, proinsulin misfolding, diabetes, bazedoxifene, sex dimorphism, ERAD, SER
Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)
We have performed specific heat and electric resistivity measurements of
NaCoO (-0.78). Two anomalies have been observed in the
specific heat data for , corresponding to magnetic transitions at
K and K reported previously. In the electrical
resistivity, a steep decrease at and a bending-like variation at
(=120K for ) have been observed. Moreover, we have investigated
the -dependence of these parameters in detail. The physical properties of
this system are very sensitive to , and the inconsistent results of previous
reports can be explained by a small difference in . Furthermore, for a
higher value, a phase separation into Na-rich and Na-poor domains occurs as
we previously proposed, while for a lower value, from characteristic
behaviors of the specific heat and the electrical resistivity at the
low-temperature region, the system is expected to be in the vicinity of the
magnetic instability which virtually exists below .Comment: 4 pages (3 figures included) and an extra figure (gif), to be
published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision
A Luminous and Fast-Expanding Type Ib Supernova SN 2012au
We present a set of photometric and spectroscopic observations of a bright
Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of
its early R-band light curve is similar to that of an average Type Ib/c
supernova. The peak absolute magnitude is M_R=-18.7+-0.2 mag, which suggests
that this supernova belongs to a very luminous group among Type Ib supernovae.
The line velocity of He I {\lambda}5876 is about 15,000 km/s around maximum,
which is much faster than that in a typical Type Ib supernova. From the
quasi-bolometric peak luminosity of (6.7+-1.3)x10^(42) erg/s, we estimate the
\Ni mass produced during the explosion as ~0.30 Msun. We also give a rough
constraint to the ejecta mass 5-7 Msun and the kinetic energy (7-18)x10^(51)
erg. We find a weak correlation between the peak absolute magnitude and He I
velocity among Type Ib SNe. The similarities to SN 1998bw in the density
structure inferred from the light curve model as well as the large peak
bolometric luminosity suggest that SN 2012au had properties similar to
energetic Type Ic supernovae.Comment: 15 pages, 5 figures; accepted to ApJ
Low Temperature Symmetry of Pyrochlore Oxide Cd2Re2O7
We report the X-ray study for the pyrochlore oxide Cd2Re2O7. Two
symmetry-lowering structural transitions were observed at Ts1=200K and
Ts2=120K. The former is of the second order from the ideal cubic pyrochlore
structure with space group Fd-3m to a tetragonally distorted structure with
I-4m2, while the latter is of the first order likely to another tetragonal
space group I4122. We discuss the feature of the lattice deformation.Comment: 4 pages, 4 figure
Gravitational GUT Breaking and the GUT-Planck Hierarchy
It is shown that non-renormalizable gravitational interactions in the Higgs
sector of supersymmetric grand unified theories (GUT's) can produce the
breaking of the unifying gauge group at the GUT scale ~GeV. Such a breaking offers an attractive alternative to the
traditional method where the superheavy GUT scale mass parameters are added ad
hoc into the theory. The mechanism also offers a natural explanation for the
closeness of the GUT breaking scale to the Planck scale. A study of the minimal
SU(5) model endowed with this mechanism is presented and shown to be
phenomenologically viable. A second model is examined where the Higgs doublets
are kept naturally light as Goldstone modes. This latter model also achieves
breaking of at but cannot easily satisfy the current
experimental proton decay bound.Comment: 11 pages, REVTeX, 1 figure included as an uuencoded Z-compressed
PostScript file. Our Web page at
http://physics.tamu.edu/~urano/research/gutplanck.html contains ready to
print PostScript version (with figures) as well as color version of plot
Quasi-One-Dimensional Spin Dynamics in -Electron Heavy-Fermion Metal YScMn
Slow spin fluctuations ( s) observed by the muon spin
relaxation technique in YScMn exhibits a power law dependence
on temperature (), where the power converges
asymptotically to unity () as the system moves away from
spin-glass instability with increasing Sc content . This linear
dependence, which is common to that observed in LiVO, is in line with
the prediction of the "intersecting Hubbard chains" model for a metallic
pyrochlore lattice, suggesting that the geometrical constraints to t2g bands
specific to the pyrochlore structure serve as a basis of the -electron
heavy-fermion state.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp
Non-generality of the Kadowaki-Woods ratio in correlated oxides
An explicit expression for the Kadowaki-Woods ratio in correlated metals is
derived by invoking saturation of the (high-frequency) Fermi-liquid scattering
rate at the Mott-Ioffe-Regel limit. Significant deviations observed in a number
of oxides are quantitatively explained due to variations in carrier density,
dimensionality, unit cell volume and the number of individual sheets in the
Brillouin zone. A generic re-scaling of the original Kadowaki-Woods plot is
also presented.Comment: 9 pages of text, 1 table, 2 figure
- …
