100 research outputs found

    Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios

    Get PDF
    The oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine environments north of Hawaii. We present the first measurements of the vertical water column distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine particles, and zooplankton near Station ALOHA (22°45′N, 158°W). Our results reveal production and demethylation of methylmercury in both the euphotic (0–175 m) and mesopelagic zones (200–1,000 m). We document a strong relationship between Hg isotopic composition and depth in particles, zooplankton, and fish in the water column and diurnal variations in Δ199Hg values in zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope relationships in the marine food web, we suggest that the Hg found in large pelagic fish at Station ALOHA was originally deposited largely by precipitation, transformed into methyl‐Hg, and bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions reflect abiotic and biotic production and degradation of methyl‐Hg throughout the water column and the importance of particles and zooplankton in the vertical transport of Hg

    Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios

    Full text link
    The oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine environments north of Hawaii. We present the first measurements of the vertical water column distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine particles, and zooplankton near Station ALOHA (22°45â ²N, 158°W). Our results reveal production and demethylation of methylmercury in both the euphotic (0â 175 m) and mesopelagic zones (200â 1,000 m). We document a strong relationship between Hg isotopic composition and depth in particles, zooplankton, and fish in the water column and diurnal variations in Î 199Hg values in zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope relationships in the marine food web, we suggest that the Hg found in large pelagic fish at Station ALOHA was originally deposited largely by precipitation, transformed into methylâ Hg, and bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions reflect abiotic and biotic production and degradation of methylâ Hg throughout the water column and the importance of particles and zooplankton in the vertical transport of Hg.Key PointsMMHg bioaccumulated in fish is derived primarily from Hg (II) deposited in atmospheric precipitationMarine particles host the majority of Hg available for production of MMHg in the open oceanMethylation and demethylation of Hg occurs throughout the euphotic and mesopelagic zones in the North Pacific Subtropical GyrePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/1/gbc20883.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/2/gbc20883_am.pd

    Case series: convalescent plasma therapy for patients with COVID-19 and primary antibody deficiency

    Get PDF
    Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitudinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 is advisable and early re-treatment might be considered in patients with persistent viral shedding

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Transfusion-transmitted hepatitis E in Germany, 2013

    Get PDF
    The reported IgG seroprevalence against hepatitis E virus (HEV) in German blood donations is 6.8%, and HEV RNA detected in 0.08%, but documented evidence for HEV transmission is lacking. We identified two donations from a single donor containing 120 IU HEV RNA/mL plasma and 490 IU/mL. An infectious dose of 7,056 IU HEV RNA was transmitted via apheresis platelets to an immunosuppressed patient who developed chronic HEV. Further, transmission was probable in an immunocompetent child

    Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a [11C]PBR28 PET study

    Get PDF
    Repeated withdrawal from alcohol is clinically associated with progressive cognitive impairment. Microglial activation occurring during pre-clinical models of alcohol withdrawal is associated with learning deficits. We investigated whether there was microglial activation in recently detoxified alcohol-dependent patients (ADP), using [11C]PBR28 positron emission tomography (PET), selective for the 18kDa translocator protein (TSPO) highly expressed in activated microglia and astrocytes. We investigated the relationship between microglial activation and cognitive performance. Twenty healthy control (HC) subjects (45±13; M:F 14:6) and nine ADP (45±6, M:F 9:0) were evaluated. Dynamic PET data were acquired for 90 min following an injection of 331±15 MBq [11C]PBR28. Regional volumes of distribution (VT) for regions of interest (ROIs) identified a priori were estimated using a two-tissue compartmental model with metabolite-corrected arterial plasma input function. ADP had an ~20% lower [11C]PBR28 VT, in the hippocampus (F(1,24) 5.694; P=0.025), but no difference in VT in other ROIs. Hippocampal [11C]PBR28 VT was positively correlated with verbal memory performance in a combined group of HC and ADP (r=0.720, P<0.001), an effect seen in HC alone (r=0.738; P=0.001) but not in ADP. We did not find evidence for increased microglial activation in ADP, as seen pre-clinically. Instead, our findings suggest lower glial density or an altered activation state with lower TSPO expression. The correlation between verbal memory and [11C]PBR28 VT, raises the possibility that abnormalities of glial function may contribute to cognitive impairment in ADP

    Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats

    Get PDF
    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2–3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.Nutricia Researc

    The physician's unique role in preventing violence: a neglected opportunity?

    Full text link
    corecore