316 research outputs found
Intensity Mapping with Carbon Monoxide Emission Lines and the Redshifted 21 cm Line
We quantify the prospects for using emission lines from rotational
transitions of the CO molecule to perform an `intensity mapping' observation at
high redshift during the Epoch of Reionization (EoR). The aim of CO intensity
mapping is to observe the combined CO emission from many unresolved galaxies,
to measure the spatial fluctuations in this emission, and use this as a tracer
of large scale structure at very early times in the history of our Universe.
This measurement would help determine the properties of molecular clouds -- the
sites of star formation -- in the very galaxies that reionize the Universe. We
further consider the possibility of cross-correlating CO intensity maps with
future observations of the redshifted 21 cm line. The cross spectrum is less
sensitive to foreground contamination than the auto power spectra, and can
therefore help confirm the high redshift origin of each signal. Furthermore,
the cross spectrum measurement would help extract key information about the
EoR, especially regarding the size distribution of ionized regions. We discuss
uncertainties in predicting the CO signal at high redshift, and discuss
strategies for improving these predictions. Under favorable assumptions, and
feasible specifications for a CO survey mapping the CO(2-1) and CO(1-0) lines,
the power spectrum of CO emission fluctuations and its cross spectrum with
future 21 cm measurements from the MWA are detectable at high significance.Comment: 19 pages, 8 figures, submitted to Ap
A Self-consistent Framework for Multiline Modeling in Line Intensity Mapping Experiments
Line intensity mapping (LIM) is a promising approach to study star formation and the interstellar medium (ISM) in galaxies by measuring the aggregate line emission from the entire galaxy population. In this work, we develop a simple yet physically motivated framework for modeling the line emission as would be observed in LIM experiments. It is done by building on analytic models of the cosmic infrared background that connect total infrared luminosity of galaxies to their host dark matter halos. We present models of the H I 21 cm, CO (1−0), [C II] 158 μm, and [N II] 122 and 205 μm lines consistent with current observational constraints. With four case studies of various combinations of these lines that probe different ISM phases, we demonstrate the potential for reliably extracting physical properties of the ISM, and the evolution of these properties with cosmic time, from auto- and cross-correlation analysis of these lines as measured by future LIM experiments
Strong interfacial exchange field in the graphene/EuS heterostructure
Exploiting 2D materials for spintronic applications can potentially realize
next-generation devices featuring low-power consumption and quantum operation
capability. The magnetic exchange field (MEF) induced by an adjacent magnetic
insulator enables efficient control of local spin generation and spin
modulation in 2D devices without compromising the delicate material structures.
Using graphene as a prototypical 2D system, we demonstrate that its coupling to
the model magnetic insulator (EuS) produces a substantial MEF (> 14 T) with
potential to reach hundreds of Tesla, which leads to orders-of-magnitude
enhancement in the spin signal originated from Zeeman spin-Hall effect.
Furthermore, the new ferromagnetic ground state of Dirac electrons resulting
from the strong MEF may give rise to quantized spin-polarized edge transport.
The MEF effect shown in our graphene/EuS devices therefore provides a key
functionality for future spin logic and memory devices based on emerging 2D
materials in classical and quantum information processing
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
A Self-consistent Framework for Multiline Modeling in Line Intensity Mapping Experiments
Line intensity mapping (LIM) is a promising approach to study star formation and the interstellar medium (ISM) in galaxies by measuring the aggregate line emission from the entire galaxy population. In this work, we develop a simple yet physically motivated framework for modeling the line emission as would be observed in LIM experiments. It is done by building on analytic models of the cosmic infrared background that connect total infrared luminosity of galaxies to their host dark matter halos. We present models of the H I 21 cm, CO (1−0), [C II] 158 μm, and [N II] 122 and 205 μm lines consistent with current observational constraints. With four case studies of various combinations of these lines that probe different ISM phases, we demonstrate the potential for reliably extracting physical properties of the ISM, and the evolution of these properties with cosmic time, from auto- and cross-correlation analysis of these lines as measured by future LIM experiments
FarView: An In-Situ Manufactured Lunar Far Side Radio Array Concept for 21-cm Dark Ages Cosmology
FarView is an early-stage concept for a large, low-frequency radio
observatory, manufactured in-situ on the lunar far side using metals extracted
from the lunar regolith. It consists of 100,000 dipole antennas in compact
subarrays distributed over a large area but with empty space between subarrays
in a core-halo structure. FarView covers a total area of ~200 km2, has a dense
core within the inner ~36 km2, and a ~power-law falloff of antenna density out
to ~14 km from the center. With this design, it is relatively easy to identify
multiple viable build sites on the lunar far side. The science case for FarView
emphasizes the unique capabilities to probe the unexplored Cosmic Dark Ages -
identified by the 2020 Astrophysics Decadal Survey as the discovery area for
cosmology. FarView will deliver power spectra and tomographic maps tracing the
evolution of the Universe from before the birth of the first stars to the
beginning of Cosmic Dawn, and potentially provide unique insights into dark
matter, early dark energy, neutrino masses, and the physics of inflation. What
makes FarView feasible and affordable in the timeframe of the 2030s is that it
is manufactured in-situ, utilizing space industrial technologies. This in-situ
manufacturing architecture utilizes Earth-built equipment that is transported
to the lunar surface to extract metals from the regolith and will use those
metals to manufacture most of the array components: dipole antennas, power
lines, and silicon solar cell power systems. This approach also enables a long
functional lifetime, by permitting servicing and repair of the observatory. The
full 100,000 dipole FarView observatory will take 4 - 8 years to build,
depending on the realized performance of the manufacturing elements and the
lunar delivery scenario.Comment: 26 pages, 7 figures, 2 table
Pre-Operative Risk Factors Predict Post-Operative Respiratory Failure after Liver Transplantation
OBJECTIVE: Post-operative pulmonary complications significantly affect patient survival rates, but there is still no conclusive evidence regarding the effect of post-operative respiratory failure after liver transplantation on patient prognosis. This study aimed to predict the risk factors for post-operative respiratory failure (PRF) after liver transplantation and the impact on short-term survival rates. DESIGN: The retrospective observational cohort study was conducted in a twelve-bed adult surgical intensive care unit in northern Taiwan. The medical records of 147 liver transplant patients were reviewed from September 2002 to July 2007. Sixty-two experienced post-operative respiratory failure while the remaining 85 patients did not. MEASUREMENTS AND MAIN RESULTS: Gender, age, etiology, disease history, pre-operative ventilator use, molecular adsorbent re-circulating system (MARS) use, source of organ transplantation, model for end-stage liver disease score (MELD) and Child-Turcotte-Pugh score calculated immediately before surgery were assessed for the two groups. The length of the intensive care unit stay, admission duration, and mortality within 30 days, 3 months, and 1 year were also evaluated. Using a logistic regression model, post-operative respiratory failure correlated with diabetes mellitus prior to liver transplantation, pre-operative impaired renal function, pre-operative ventilator use, pre-operative MARS use and deceased donor source of organ transplantation (p<0.05). Once liver transplant patients developed PRF, their length of ICU stay and admission duration were prolonged, significantly increasing their mortality and morbidity (p<0.001). CONCLUSIONS: The predictive pre-operative risk factors significantly influenced the occurrence of post-operative respiratory failure after liver transplantation
Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models
BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy
Future Perspectives for Gamma-ray Burst Detection from Space
Since their first discovery in the late 1960s, Gamma-ray bursts have
attracted an exponentially growing interest from the international community
due to their central role in the most highly debated open questions of the
modern research of astronomy, astrophysics, cosmology, and fundamental physics.
These range from the intimate nuclear composition of high density material
within the core of ultra-dense neuron stars, to stellar evolution via the
collapse of massive stars, the production and propagation of gravitational
waves, as well as the exploration of the early Universe by unveiling first
stars and galaxies (assessing also their evolution and cosmic re-ionization).
GRBs have stimulated in the past 50 years the development of cutting-edge
technological instruments for observations of high energy celestial sources
from space, leading to the launch and successful operations of many different
scientific missions (several of them still in data taking mode nowadays). In
this review, we provide a brief description of the GRB-dedicated missions from
space being designed and developed for the future. The list of these projects,
not meant to be exhaustive, shall serve as a reference to interested readers to
understand what is likely to come next to lead the further development of GRB
research and associated phenomenology.Comment: Accepted for publication on Universe. Invited review, contribution to
the Universe Special Issue "Recent Advances in Gamma Ray Astrophysics and
Future Perspectives", P. Romano eds.
(https://www.mdpi.com/journal/universe/special_issues/7299902Z97
- …
