87 research outputs found

    Recovery of the herbaceous layer in the young silver birch and black alder stands that developed spontaneously after a forest fire

    Get PDF
    The studies, which were conducted in southern Poland, focused on the recovery of the herb layer in 17-year-old post-fire silver birch and black alder forests. Although both types of stands, which are of the same age, developed spontaneously, the alder stands occupied damper sites (with thicker A horizons that survived the fire) than those in the birch forests. We surveyed the migration rates of 44 woodland species, primarily ancient woodland indicators, into both forests and the potential differences in these rates depending on their moisture regime and the community type represented by unburned forests, which were treated as the source of the woodland species pool. Additionally, the role of local depressions with high humidity that were covered by post-fire alder woods in the colonization process, as well as species survivorship and recolonisation, were estimated. Woodland species showed diverse migration paces among the sites; most of them migrated faster on more fertile sites with a higher humidity. Small patches of post-fire alder woods contributed to the recolonisation process since many woodland species in the herb layer survived the fire due to its high humidity, which inhibited the intensity of the forest fire. The recovery of woodland species in post-fire woods is the combined effect of regeneration, which relies on autochthonic propagules, and secondary succession, which is based on allochthonic propagules. Local depressions, which provide refuges for fire-sensitive, dispersal-limited species, contribute to their survivorship and thus to the successive recovery of herbaceous layers after a fire

    A synthesized field survey database of vegetation and active-layer properties for the Alaskan tundra (1972–2020)

    Get PDF
    Studies in recent decades have shown strong evidence of physical and biological changes in the Arctic tundra, largely in response to rapid rates of warming. Given the important implications of these changes for ecosystem services, hydrology, surface energy balance, carbon budgets, and climate feedbacks, research on the trends and patterns of these changes is becoming increasingly important and can help better constrain estimates of local, regional, and global impacts as well as inform mitigation and adaptation strategies. Despite this great need, scientific understanding of tundra ecology and change remains limited, largely due to the inaccessibility of this region and less intensive studies compared to other terrestrial biomes. A synthesis of existing datasets from past field studies can make field data more accessible and open up possibilities for collaborative research as well as for investigating and informing future studies. Here, we synthesize field datasets of vegetation and active-layer properties from the Alaskan tundra, one of the most well-studied tundra regions. Given the potentially increasing intensive fire regimes in the tundra, fire history and severity attributes have been added to data points where available. The resulting database is a resource that future investigators can employ to analyze spatial and temporal patterns in soil, vegetation, and fire disturbance-related environmental variables across the Alaskan tundra. This database, titled the Synthesized Alaskan Tundra Field Database (SATFiD), can be accessed at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for Biogeochemical Dynamics (Chen et al., 2023: https://doi.org/10.3334/ORNLDAAC/2177).</p

    Dispersal timing, palatability and caching of acorns of Aesculus turbinata Bl.

    Get PDF
    Aesculus turbinata acorns were dispersed earlier than other acorn-producing species and are removed completely by rodents, although the acorns are unpalatable. The dispersal timing and low palatability to rodents on A. turbinata acorns promote the seed caching by rodents, facilitating the seedling emergence is possible even in lower-seeding years
    corecore