275 research outputs found

    An XMM-Newton observation of Ton S180: Constraints on the continuum emission in ultrasoft Seyfert galaxies

    Full text link
    We present an XMM-Newton observation of the bright, narrow-line, ultrasoft Seyfert 1 galaxy Ton S180. The 0.3-10 keV X-ray spectrum is steep and curved, showing a steep slope above 2.5 keV (Gamma ~ 2.3) and a smooth, featureless excess of emission at lower energies. The spectrum can be adequately parameterised using a simple double power-law model. The source is strongly variable over the course of the observation but shows only weak spectral variability, with the fractional variability amplitude remaining approximately constant over more than a decade in energy. The curved continuum shape and weak spectral variability are discussed in terms of various physical models for the soft X-ray excess emission, including reflection off the surface of an ionised accretion disc, inverse-Compton scattering of soft disc photons by thermal electrons, and Comptonisation by electrons with a hybrid thermal/non-thermal distribution. We emphasise the possibility that the strong soft excess may be produced by dissipation of accretion energy in the hot, upper atmosphere of the putative accretion disc.Comment: 9 pages, accepted for publication in MNRA

    Spectroscopic Confirmation of a Radio-Selected Galaxy Overdensity at z=1.11

    Full text link
    We report the discovery of a galaxy overdensity at z=1.11 associated with the z=1.110 high-redshift radio galaxy MG0442+0202. The group, CL0442+0202, was found in a near-infrared survey of z>1 radio galaxies undertaken to identify spatially-coincident regions with a high density of objects red in I-K' color, typical of z>1 elliptical galaxies. Spectroscopic observations from the Keck telescope reveal five galaxies within 35" of MG0442+0202 at 1.10<z<1.11. These member galaxies have broad-band colors and optical spectra consistent with passively-evolving elliptical galaxies formed at high redshift. A 45ks Chandra X-Ray Observatory observation detects the radio galaxy and four point sources within 15" of the radio galaxy, corresponding to a surface density two orders of magnitude higher than average for X-ray sources at these flux levels, S(0.5-2keV) > 5e-16 erg/cm2/s. One of these point sources is identified with a radio-quiet, typeII quasar at z=1.863, akin to sources recently reported in deep Chandra surveys. The limit on an extended hot intracluster medium in the Chandra data is S(1-6keV) < 1.9e-15 erg/cm2/s (3-sigma, 30" radius aperture). Though the X-ray observations do not confirm the existence of a massive, bound cluster at z>1, the success of the optical/near-infrared targeting of early-type systems near the radio galaxy validates searches using radio galaxies as beacons for high-redshift large-scale structure. We interpret CL0442+0202 to be a massive cluster in the process of formation.Comment: 23 pages, 7 figure

    Is MS1054-03 an exceptional cluster? A new investigation of ROSAT/HRI X-ray data

    Get PDF
    We reanalyzed the ROSAT/HRI observation of MS1054-03, optimizing the channel HRI selection and including a new exposure of 68 ksec. From a wavelet analysis of the HRI image we identify the main cluster component and find evidence for substructure in the west, which might either be a group of galaxies falling onto the cluster or a foreground source. Our 1-D and 2-D analysis of the data show that the cluster can be fitted well by a classical betamodel centered only 20arcsec away from the central cD galaxy. The core radius and beta values derived from the spherical model(beta = 0.96_-0.22^+0.48) and the elliptical model (beta = 0.73+/-0.18) are consistent. We derived the gas mass and total mass of the cluster from the betamodel fit and the previously published ASCA temperature (12.3^{+3.1}_{-2.2} keV). The gas mass fraction at the virial radius is fgas = (14[-3,+2.5]+/-3)% for Omega_0=1, where the errors in brackets come from the uncertainty on the temperature and the remaining errors from the HRI imaging data. The gas mass fraction computed for the best fit ASCA temperature is significantly lower than found for nearby hot clusters, fgas=20.1pm 1.6%. This local value can be matched if the actual virial temperature of MS1054-032 were close to the lower ASCA limit (~10keV) with an even lower value of 8 keV giving the best agreement. Such a bias between the virial and measured temperature could be due to the presence of shock waves in the intracluster medium stemming from recent mergers. Another possibility, that reconciles a high temperature with the local gas mass fraction, is the existence of a non zero cosmological constant.Comment: 12 pages, 5 figures, accepted for publication in Ap

    The Heisenberg model on the 1/5-depleted square lattice and the CaV4O9 compound

    Full text link
    We investigate the ground state structure of the Heisenberg model on the 1/5-depleted square lattice for arbitrary values of the first- and second-neighbor exchange couplings. By using a mean-field Schwinger-boson approach we present a unified description of the rich ground-state diagram, which include the plaquette and dimer resonant-valence-bond phases, an incommensurate phase and other magnetic orders with complex magnetic unit cells. We also discuss some implications of ours results for the experimental realization of this model in the CaV4O9 compound.Comment: 4 pages, Latex, 7 figures included as eps file

    Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

    Full text link
    A new scheme for testing nuclear matter equations of state (EsoS) at high densities using constraints from neutron star phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable EoS shall not allow the direct Urca process to occur in neutron stars with masses below 1.5 M1.5~M_{\odot}, and also shall not contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass measurements of 2.1 +/- 0.2 M_sun (1 sigma level) for PSR J0751+1807, of 2.0 +/- 0.1 M_sun from the innermost stable circular orbit for 4U 1636-536, the baryon mass - gravitational mass relationships from Pulsar B in J0737-3039 and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal emission of RX J1856-3754. This scheme is applied to a set of relativistic EsoS constrained otherwise from nuclear matter saturation properties with the result that no EoS can satisfy all constraints simultaneously, but those with density-dependent masses and coupling constants appear most promising.Comment: 15 pages, 8 figures, 5 table

    Spin wave analysis to the spatially-anisotropic Heisenberg antiferromagnet on triangular lattice

    Full text link
    We study the phase diagram at T=0 of the antiferromagnetic Heisenberg model on the triangular lattice with spatially-anisotropic interactions. For values of the anisotropy very close to J_alpha/J_beta=0.50, conventional spin wave theory predicts that quantum fluctuations melt the classical structures, for S=1/2. For the regime J_beta<J_alpha, it is shown that the incommensurate spiral phases survive until J_beta/J_alpha=0.27, leaving a wide region where the ground state is disordered. The existence of such nonmagnetic states suggests the possibility of spin liquid behavior for intermediate values of the anisotropy.Comment: Revised version, 4 pages, Latex (twocolumn), 4 figures as eps files. To appear in PR

    Geometrical Distance Determination using Type I X-ray Bursts

    Get PDF
    With the excellent angular resolution of the Chandra X-ray Observatory, it is possible to geometrically determine the distance to variable Galactic sources, based on the phenomenon that scattered radiation appearing in the X-ray halo has to travel along a slightly longer path than the direct, unscattered radiation. By measuring the delayed variability, constraints on the source distance can be obtained if the halo brightness is large enough to dominate the point spread function (PSF) and to provide sufficient statistics. The distance to Cyg X-3, which has a quasi-sinusoidal light curve, has been obtained with this approach by Predehl et al. Here we examine the feasibility of using the delayed signature of type I X-ray bursts as distance indicators. We use simulations of delayed X-ray burst light curves in the halo to find that the optimal annular region and energy band for a distance measurement with a grating observation is roughly 10-50" and 1-5 keV respectively, assuming Chandra's effective area and PSF, uniformly distributed dust, the input spectrum and optical depth to GX 13+1, and the Weingartner & Draine interstellar grain model. We find that the statistics are dominated by Poisson noise rather than systematic uncertainties, e.g., the PSF contribution to the halo. Using Chandra, a distance measurement to such a source at 4 (8) kpc could be made to about 23% (30%) accuracy with a single burst with 68% confidence. By stacking many bursts, a reasonable estimate of systematic errors limit the distance measurement to about 10% accuracy.Comment: 7 pages, 4 figures; Accepted for publication in Ap
    corecore