937 research outputs found

    Memory effects in microscopic traffic models and wide scattering in flow-density data

    Full text link
    By means of microscopic simulations we show that non-instantaneous adaptation of the driving behaviour to the traffic situation together with the conventional measurement method of flow-density data can explain the observed inverse-λ\lambda shape and the wide scattering of flow-density data in ``synchronized'' congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing a new dynamical variable describing the adaptation of drivers to the surrounding traffic situation during the past few minutes (``subjective level of service'') and couple this internal state to parameters of the underlying model that are related to the driving style. % For illustration, we use the intelligent-driver model (IDM) as underlying model, characterize the level of service solely by the velocity and couple the internal variable to the IDM parameter ``netto time gap'', modelling an increase of the time gap in congested traffic (``frustration effect''), that is supported by single-vehicle data. % We simulate open systems with a bottleneck and obtain flow-density data by implementing ``virtual detectors''. Both the shape, relative size and apparent ``stochasticity'' of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.Comment: 8 pages, submitted to Physical Review

    Calibrating Car-Following Models using Trajectory Data: Methodological Study

    Full text link
    The car-following behavior of individual drivers in real city traffic is studied on the basis of (publicly available) trajectory datasets recorded by a vehicle equipped with an radar sensor. By means of a nonlinear optimization procedure based on a genetic algorithm, we calibrate the Intelligent Driver Model and the Velocity Difference Model by minimizing the deviations between the observed driving dynamics and the simulated trajectory when following the same leading vehicle. The reliability and robustness of the nonlinear fits are assessed by applying different optimization criteria, i.e., different measures for the deviations between two trajectories. The obtained errors are in the range between~11% and~29% which is consistent with typical error ranges obtained in previous studies. In addition, we found that the calibrated parameter values of the Velocity Difference Model strongly depend on the optimization criterion, while the Intelligent Driver Model is more robust in this respect. By applying an explicit delay to the model input, we investigated the influence of a reaction time. Remarkably, we found a negligible influence of the reaction time indicating that drivers compensate for their reaction time by anticipation. Furthermore, the parameter sets calibrated to a certain trajectory are applied to the other trajectories allowing for model validation. The results indicate that ``intra-driver variability'' rather than ``inter-driver variability'' accounts for a large part of the calibration errors. The results are used to suggest some criteria towards a benchmarking of car-following models

    Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52

    Full text link
    I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic liquid crystal I52. Without modulation, the primary bifurcation from the uniform state is a direct transition to a state of spatiotemporal chaos. This state is the result of the interaction of four, degenerate traveling modes: right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls, i.e. standing rectangles, are observed. These results are compared with existing predictions based on coupled complex Ginzburg-Landau equations

    Towards a Macroscopic Modelling of the Complexity in Traffic Flow

    Full text link
    We present a macroscopic traffic flow model that extends existing fluid-like models by an additional term containing the second derivative of the safe velocity. Two qualitatively different shapes of the safe velocity are explored: a conventional Fermi-type function and a function exhibiting a plateau at intermediate densities. The suggested model shows an extremely rich dynamical behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.

    Direct observation of twist mode in electroconvection in I52

    Full text link
    I report on the direct observation of a uniform twist mode of the director field in electroconvection in I52. Recent theoretical work suggests that such a uniform twist mode of the director field is responsible for a number of secondary bifurcations in both electroconvection and thermal convection in nematics. I show here evidence that the proposed mechanisms are consistent with being the source of the previously reported SO2 state of electroconvection in I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I observe in electroconvection in I52. There are quantitative differences between the experiment and calculations that only include the twist mode. These differences suggest that a complete description must include effects described by the weak-electrolyte model of electroconvection

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX

    Probing complex RNA structures by mechanical force

    Full text link
    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure

    Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics

    Full text link
    Based on the statistical evaluation of experimental single-vehicle data, we propose a quantitative interpretation of the erratic scattering of flow-density data in synchronized traffic flows. A correlation analysis suggests that the dynamical flow-density data are well compatible with the so-called jam line characterizing fully developed traffic jams, if one takes into account the variation of their propagation speed due to the large variation of the netto time gaps (the inhomogeneity of traffic flow). The form of the time gap distribution depends not only on the density, but also on the measurement cross section: The most probable netto time gap in congested traffic flow upstream of a bottleneck is significantly increased compared to uncongested freeway sections. Moreover, we identify different power-law scaling laws for the relative variance of netto time gaps as a function of the sampling size. While the exponent is -1 in free traffic corresponding to statistically independent time gaps, the exponent is about -2/3 in congested traffic flow because of correlations between queued vehicles.Comment: For related publications see http://www.helbing.or

    Congested Traffic States in Empirical Observations and Microscopic Simulations

    Full text link
    We present data from several German freeways showing different kinds of congested traffic forming near road inhomogeneities, specifically lane closings, intersections, or uphill gradients. The states are localized or extended, homogeneous or oscillating. Combined states are observed as well, like the coexistence of moving localized clusters and clusters pinned at road inhomogeneities, or regions of oscillating congested traffic upstream of nearly homogeneous congested traffic. The experimental findings are consistent with a recently proposed theoretical phase diagram for traffic near on-ramps [D. Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)]. We simulate these situations with a novel continuous microscopic single-lane model, the ``intelligent driver model'' (IDM), using the empirical boundary conditions. All observations, including the coexistence of states, are qualitatively reproduced by describing inhomogeneities with local variations of one model parameter. We show that the results of the microscopic model can be understood by formulating the theoretical phase diagram for bottlenecks in a more general way. In particular, a local drop of the road capacity induced by parameter variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee are incorporated; full bibliographic info added. For related work see http://www.mtreiber.de/ and http://www.helbing.org
    corecore