14 research outputs found

    On the benefits of delayed ordering

    Get PDF
    Practical experience and scientific research show that there is scope for improving the performance of inventory control systems by delaying a replenishment order that is otherwise triggered by generalised and all too often inappropriate assumptions. This paper presents the first analysis of the most commonly used continuous (s, S) policies with delayed ordering for inventory systems with compound demand. We analyse policies with a constant delay for all orders as well as more flexible policies where the delay depends on the order size. For both classes of policies and general demand processes, we derive optimality conditions for the corresponding delays. In a numerical study with Erlang distributed customer inter-arrival times, we compare the cost performance of the optimal policies with no delay, a constant delay and flexible delays. Sensitivity results provide insights into when the benefit of delaying orders is most pronounced, and when applying flexible delays is essential. (C) 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS). All rights reserved

    Modelling for Service Solution of a Closed-Loop Supply Chain with the Presence of Third Party Logistics

    No full text
    Part 5: Smart Production for Mass CustomizationInternational audienceService, the word itself is a big issue in the corporate world. One of the most important parts of the reputation of a company depends how much it can provide service to customers. It is very difficult to maintain especially when it is related to a closed-loop supply chain. Quality of products is also a main factor of business that is known to all. In this model, a closed-loop supply chain with multi-retailer, single-manufacturer and single- third-party collector (3PL) is considered where service and quality issues are maintained throughout the supply chain. The model is solved by a classical optimization method and obtains global solutions in closed and quasi-closed forms. Numerical experiments are done to illustrate the model clearly. Numerical results prove the reality of the model

    Modeling of normal force and finishing torque considering shearing and ploughing effects in ultrasonic assisted magnetic abrasive finishing process with sintered magnetic abrasive powder

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).Ultrasonic assisted magnetic abrasive finishing process (UAMAF) is a precision manufacturing process that results nano-scale level finish in a part. Normal force on a particle helps indenting the particle in the work surface whereas horizontal force provides finishing torque that in-turn helps the particle to perform micro-machining. Better understanding of the effect of these forces on material removal and wear pattern of the work-piece necessitates mathematical modeling of normal force and finishing torque and subsequently its validation with experimental results. In the present study, single particle interaction concept is considered to develop a model which is subsequently applied for all active particles of magnetic abrasive powder (MAP). Separation point theory is applied to consider the effect of ploughing below a critical depth and shearing above that depth. Normal components of shearing and ploughing forces are considered for calculating normal force and horizontal components of shearing and ploughing forces are taken to calculate finishing torque. Johnson-Cook model is applied to calculate shearing strength of the work material during UAMAF. The impact of ultrasonic vibrations is considered while calculating strain rate. Images are taken with the help of scanned electron microscope and atomic force microscope to study the material removal and wear mechanism during UAMAF process. Predicted values of force and torque model are validated with the experimental values
    corecore