531 research outputs found
Exact one- and two-particle excitation spectra of acute-angle helimagnets above their saturation magnetic field
The two-magnon problem for the frustrated XXZ spin-1/2 Heisenberg Hamiltonian
and external magnetic fields exceeding the saturation field Bs is considered.
We show that the problem can be exactly mapped onto an effective tight-binding
impurity problem. It allows to obtain explicit exact expressions for the
two-magnon Green's functions for arbitrary dimension and number of
interactions. We apply this theory to a quasi-one dimensional helimagnet with
ferromagnetic nearest neighbor J1 < 0 and antiferromagnetic next-nearest
neighbor J2 > 0 interactions. An outstanding feature of the excitation spectrum
is the existence of two-magnon bound states. This leads to deviations of the
saturation field Bs from its classical value Bs(classical) which coincides with
the one-magnon instability. For the refined frustration ratio |J2/J1|> 0.374661
the minimum of the two-magnon spectrum occurs at the boundary of the Brillouin
zone. Based on the two-magnon approach, we propose general analytic expressions
for the saturation field Bs, confirming known previous results for
one-dimensional isotropic systems, but explore also the role of interchain and
long-ranged intrachain interactions as well as of the exchange anisotropy.Comment: 21 pages, 6 Figures. submitted to Phys. Rev.
Measurement of the elastic scattering cross section of neutrons from argon and neon
Background: The most significant source of background in direct dark matter
searches are neutrons that scatter elastically from nuclei in the detector's
sensitive volume. Experimental data for the elastic scattering cross section of
neutrons from argon and neon, which are target materials of interest to the
dark matter community, were previously unavailable. Purpose: Measure the
differential cross section for elastic scattering of neutrons from argon and
neon in the energy range relevant to backgrounds from (alpha,n) reactions in
direct dark matter searches. Method: Cross-section data were taken at the
Triangle Universities Nuclear Laboratory (TUNL) using the neutron
time-of-flight technique. These data were fit using the spherical optical
model. Results: The differential cross section for elastic scatting of neutrons
from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model
parameters for the elastic scattering reactions were determined from the best
fit to these data. The total elastic scattering cross section for neon was
found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model
predictions. Compared to a local optical-model for 40Ar, the elastic scattering
cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions:
These new data are important for improving Monte-Carlo simulations and
background estimates for direct dark matter searches and for benchmarking
optical models of neutron elastic scattering from these nuclei
Electron Transfer in Donor-Acceptor Systems: Many-Particle Effects and Influence of Electronic Correlations
We investigate electron transfer processes in donor-acceptor systems with a
coupling of the electronic degrees of freedom to a common bosonic bath. The
model allows to study many-particle effects and the influence of the local
Coulomb interaction U between electrons on donor and acceptor sites. Using the
non-perturbative numerical renormalization group approach we find distinct
differences between the electron transfer characteristics in the single- and
two-particle subspaces. We calculate the critical electron-boson coupling
alpha_c as a function of and show results for density-density correlation
functions in the whole parameter space. The possibility of many-particle
(bipolaronic) and Coulomb-assisted transfer is discussed.Comment: 4 pages, 4 figure
Anisotropic superexchange of a 90 degree Cu-O-Cu bond
The magnetic anisotropy af a rectangular Cu-O-Cu bond is investigated in
second order of the spin-orbit interaction. Such a bond is characteristic for
cuprates having edge sharing CuO_2 chains, and exists also in the Cu_3O_4 plane
or in ladder compounds. For a ferromagnetic coupling between the copper spins
an easy axis is found perpendicular to the copper oxygen plaquettes in
agreement with the experimental spin structure of Li_2CuO_2. In addition, a
pseudo-dipolar interaction is derived. Its estimation in the case of the
Cu_3O_4 plane (which is present for instance in Ba_2Cu_3O_4Cl_2 or
Sr_2Cu_3O_4Cl_2) gives a value which is however two orders of magnitude smaller
than the usual dipole-dipole interaction.Comment: 6 pages, 2 figures, improved referenc
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
The influence of the magnetic moment interaction of nucleons on
nucleon-deuteron elastic scattering and breakup cross sections and on elastic
scattering polarization observables has been studied. Among the numerous
elastic scattering observables only the vector analyzing powers were found to
show a significant effect, and of opposite sign for the proton-deuteron and
neutron-deuteron systems. This finding results in an even larger discrepancy
than the one previously established between neutron-deuteron data and
theoretical calculations. For the breakup reaction the largest effect was found
for the final-state-interaction cross sections. The consequences of this
observation on previous determinations of the ^1S_0 scattering lengths from
breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur
Measurements at low energies of the polarization-transfer coefficient Kyy' for the reaction 3H(p,n)3He at 0 degrees
Measurements of the transverse polarization coefficient Kyy' for the reaction
3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81
MeV. This reaction is important both as a source of polarized neutrons for
nuclear physics experiments, and as a test of theoretical descriptions of the
nuclear four-body system. Comparison is made to previous measurements,
confirming the 3H(p,n)3He reaction can be used as a polarized neutron source
with the polarization known to an accuracy of approximately 5%. Comparison to
R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is
incorrect. Changing the sign of this parameter dramatically improves the
agreement between theory and experiment.Comment: 12 pages, RevTeX, 5 eps figures, submitted to Phys. Rev.
Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition
Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species
Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO chains of CaYCuO
Neutron scattering experiments were performed on the undoped and hole-doped
CaYCuO, which consists of ferromagnetic edge-sharing
CuO chains. It was previously reported that in the undoped
CaYCuO there is an anomalous broadening of spin-wave
excitations along the chain, which is caused mainly by the antiferromagnetic
interchain interactions [Matsuda , Phys. Rev. B 63, 180403(R)
(2001)]. A systematic study of temperature and hole concentration dependencies
of the magnetic excitations shows that the magnetic excitations are softened
and broadened with increasing temperature or doping holes irrespective of
direction. The broadening is larger at higher . A characteristic feature is
that hole-doping is much more effective to broaden the excitations along the
chain. It is also suggested that the intrachain interaction does not change so
much with increasing temperature or doping although the anisotropic interaction
and the interchain interaction are reduced. In the spin-glass phase (=1.5)
and nearly disordered phase (=1.67) the magnetic excitations are much
broadened in energy and . It is suggested that the spin-glass phase
originates from the antiferromagnetic clusters, which are caused by the hole
disproportionation.Comment: 8 pages, submitted to Phys. Rev.
Analyzing power in nucleon-deuteron scattering and three-nucleon forces
Three-nucleon forces have been considered to be one possibility to resolve
the well known discrepancy between experimental values and theoretical
calculations of the nucleon analyzing power in low energy nucleon-deuteron
scattering. In this paper, we investigate possible effects of two-pion exchange
three-nucleon forces on the analyzing power and the differential cross section.
We found that the reason for different effects on the analyzing power by
different three-nucleon forces found in previous calculations is related to the
existence of the contact term. Effects of some variations of two-pion exchange
three-nucleon forces are investigated. Also, an expression for the measure of
the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys.
Rev.
- …