73 research outputs found

    Continued stabilization of a cementless 3D-printed total knee arthroplasty

    Get PDF
    Background:Three-dimensional (3D) printing of highly porous orthopaedic implants aims to promote better osseointegration, thus preventing aseptic loosening. However, short-term radiostereometric analysis (RSA) after total knee arthroplasty (TKA) has shown higher initial migration of cementless 3D-printed tibial components compared with their cemented counterparts. Therefore, critical evaluation of longer-term tibial component migration is needed. We investigated migration of a cementless 3D-printed and a cemented tibial component with otherwise similar TKA design during 5 years of follow-up, particularly the progression in migration beyond 2 years postoperatively.Methods:Seventy-two patients were randomized to a cementless 3D-printed Triathlon Tritanium (Stryker) cruciate-retaining (CR) TKA or a cemented Triathlon CR (Stryker) TKA implant. Implant migration was evaluated with RSA at baseline and postoperatively at 3 months and at 1, 2, and 5 years. The maximum total point motion (MTPM) of the tibial component was compared between the groups at 5 years, and progression in migration was assessed between 2 and 5 years. Individual implants were classified as continuously migrating if the MTPM was >= 0.1 mm/year beyond 2 years postoperatively. Clinical scores were evaluated, and a linear mixed-effects model was used to analyze repeated measurements.Results:At 5 years, the mean MTPM was 0.66 mm (95% confidence interval [CI], 0.56 to 0.78 mm) for the cementless group and 0.53 mm (95% CI, 0.43 to 0.64 mm) for the cemented group (p = 0.09). Between 2 and 5 years, there was no progression in mean MTPM for the cementless group (0.02 mm; 95% CI, -0.06 to 0.10 mm) versus 0.07 mm (95% CI, 0.00 to 0.14) for the cemented group. One implant was continuously migrating in the cementless group, and 4 were continuously migrating in the cemented group. The clinical scores were comparable between the groups across the entire time of follow-up.Conclusions:No significant difference in mean migration was found at 5 years between the cementless and cemented TKA implants. Progression of tibial component migration was present beyond 2 years for the cemented implant, whereas the cementless implant remained stable after initial early migration.Level of evidence:Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.Orthopaedics, Trauma Surgery and Rehabilitatio

    Cement leakage causes potential thermal injury in vertebroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percutaneous vertebroplasty by injecting PMMA bone cement into the fractured vertebrae has been widely accepted in treatment of spinal compression fracture. However, the exothermic polymerization of bone cement may cause osseous or neural tissue injury. This study is thus designed to evaluate the potential risk of thermal damage in percutaneous vertebroplasty.</p> <p>Method</p> <p>Twelve porcine vertebrae were immersed in 37°C saline for the experiment. In the first stage of the study, vertebroplasty without cement leakage (control group, n = 6) was simulated. The anterior cortex, foramen, posterior cortex and the center of the vertebral body were selected for temperature measurement. Parameters including peak temperature and duration above 45°C were recorded. In the second stage, a model (n = 6) simulating bone cement leaking into the spinal canal was designed. The methods for temperature measurement were identical to those used in the first stage.</p> <p>Results</p> <p>In Stage 1 of the study (vertebroplasty of the porcine vertebral body in the absence of cement leakage), the average maximal temperature at the anterior cortex was 42.4 ± 2.2°C; at the neural foramen 39.5 ± 2.1°C; at the posterior cortex 40.0 ± 2.5°C and at the vertebral center, 68.1 ± 3.4°C. The average time interval above 45°C was 0 seconds at the anterior cortex; at the neural foramen, 0 seconds; at the posterior cortex, 0 seconds and at the vertebral center, 223 seconds. Thus, except at the core of the bone cement, temperatures around the vertebral body did not exceed 45°C. In Stage 2 of the study (cement leakage model), the average maximal temperature at the anterior cortex was 42.7 ± 2.4°C; at the neural foramen, 41.1 ± 0.4°C; at the posterior cortex, 59.1 ± 7.6°C and at the vertebral center, 77.3 ± 5.7°C. The average time interval above 45°C at the anterior cortex was 0 seconds; at the neural foramen, 0 seconds; at the posterior cortex, 329.3 seconds and at the vertebral center, 393.2 seconds. Based on these results, temperatures exceeded 45°C at the posterior cortex and at the vertebral center.</p> <p>Conclusions</p> <p>The results indicated that, for bone cement confined within the vertebra, curing temperatures do not directly cause thermal injury to the nearby soft tissue. If bone cement leaks into the spinal canal, the exothermic reaction at the posterior cortex might result in thermal injury to the neural tissue.</p

    Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive.</p> <p>Methods</p> <p>This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design.</p> <p>Results</p> <p>The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening.</p> <p>Conclusion</p> <p>The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components.</p

    A 2-year prospective study of patient-relevant outcomes in patients operated on for knee osteoarthritis with tibial osteotomy

    Get PDF
    BACKGROUND: Tibial osteotomy is a treatment for younger and/or physically active patients suffering from uni-compartmental knee osteoarthritis. The open wedge osteotomy by the hemicallotasis technique includes the use of external fixation. The use of external fixation has several advantages, as early mobilization and the opportunity for optimal correction. However, the hemicallotasis technique has also been described as a cumbersome procedure for the patient. The aim of this study was to prospectively evaluate patient-relevant outcomes during the first 2 post-operative years. Especially the treatment period, during which external fixation was used, was closely monitored. METHODS: In an uncontrolled study, fifty-eight consecutive patients, 30 men and 28 women (mean age 54 years) were operated on by the hemicallotasis technique were evaluated with the patient-relevant outcome measure Knee injury and Osteoarthritis Outcome Score (KOOS) preoperatively, during the treatment with external fixation, one week after removal of the external fixation, at 6 months, and at one and two years postoperatively. RESULTS: At the 2-year postoperative follow-up, all subscales of the KOOS were improved (p < 0.001), mostly in pain (41–80 on a 0–100 worst to best scale) and knee-related quality of life (21–61 on a 0–100 worst to best scale), compared to the preoperative status. Significant improvements in pain and other symptoms, function of daily life and quality of life were seen already during the treatment period (mean 98 ± 18 days) with the external fixation. More demanding functions such as kneeling, squatting, jumping and running, were improved first after extraction of the external fixation device and the pins. CONCLUSION: Tibial osteotomy by the hemicallotasis technique yields large improvement in self-rated pain, function and quality of life, which persists over two years. Surprisingly, large improvements occurred already during the immediate post-operative period when the external fixation was still used

    Polyethylene thickness is a risk factor for wear necessitating insert exchange

    Get PDF
    PURPOSE: The aim of this observational study was to investigate the optimal minimal polyethylene (PE) thickness in total knee arthroplasty (TKA) and identify other risk factors associated with revision of the insert due to wear. METHODS: A total of 84 TKA were followed for 11-16 years. All patients received the same prosthesis design (Interax; Howmedica/ Stryker) with halfbearings: separate PE-inserts medially and laterally. Statistical analysis comprised Cox-regression to correct for confounding. RESULTS: Eight knees (9.5%) had been revised due to thinning inserts and an additional patient is scheduled for revision. PE thickness, diagnosis, BMI and weight are risk factors for insert exchange. For each millimetre decrease in PE thickness, the risk of insert exchange increases 3.0 times, which remains after correction for age, gender, weight, diagnosis and femoral-tibial angle. Insert exchange was 4.73 times more likely in OA-patients compared to RA-patients. For every unit increase in BMI and weight the risk for insert exchange increases 1.40 times and 1.14 times, respectively. CONCLUSIONS: In conclusion we therefore advise against the use of thin PE inserts in modular TKA and recommend PE inserts with a minimal 8-mm thickness.Optimising joint reconstruction management in arthritis and bone tumour patient

    Once-weekly oral medication with alendronate does not prevent migration of knee prostheses: A double-blind randomized RSA study

    Get PDF
    Background and purpose Early migration of joint replacements is an effect of poor fixation and can predict late loosening. By reducing the bone resorption after implantation of a joint replacement, it should be possible to enhance the initial fixation of the implant. We studied the effect of once-weekly treatment with alendronate after knee replacement

    Association between knee alignment and knee pain in patients surgically treated for medial knee osteoarthritis by high tibial osteotomy. A one year follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between knee alignment and knee pain in knee osteoarthritis (OA) is unclear. High tibial osteotomy, a treatment option in knee OA, alters load from the affected to the unaffected compartment of the knee by correcting malalignment. This surgical procedure thus offers the possibility to study the cross-sectional and longitudinal association of alignment to pain. The aims were to study 1) the preoperative association of knee alignment to preoperative knee pain and 2) the association of change in knee alignment with surgery to change in knee pain over time in patients operated on for knee OA by high tibial osteotomy.</p> <p>Methods</p> <p>182 patients (68% men) mean age 53 years (34 - 69) with varus alignment having tibial osteotomy by the hemicallotasis technique for medial knee OA were consecutively included. Knee alignment was assessed by the Hip-Knee-Ankle (HKA) angle from radiographs including the hip and ankle joints. Knee pain was measured by the subscale pain (0 - 100, worst to best scale) of the Knee injury and Osteoarthritis Outcome Score (KOOS) preoperatively and at one year follow-up. To estimate the association between knee alignment and knee pain multivariate regression analyses were used.</p> <p>Results</p> <p>Mean preoperative varus alignment was 170 degrees (153 - 178) and mean preoperative KOOS pain was 42 points (3 - 86). There was no association between preoperative varus alignment and preoperative KOOS pain, crude analysis 0.02 points (95% CI -0.6 - 0.7) change in pain with every degree of HKA angle, adjusted analysis 0.3 points (95% CI -1.3 - 0.6).</p> <p>The mean postoperative knee alignment was 184 degrees (171 - 185). The mean change in knee alignment was 13 degrees (0 - 30). The mean change in KOOS pain was 32 (-16 - 83). There was neither any association between change in knee alignment and change in KOOS pain over time, crude analysis 0.3 point (95% CI -0.6 - 1.2), adjusted analysis 0.4 points (95% CI 0.6 - 1.4).</p> <p>Conclusion</p> <p>We found no association between knee alignment and knee pain in patients with knee OA indicating that alignment and pain are separate entities, and that the degree of preoperative malalignment is not a predictor of knee pain after high tibial osteotomy.</p

    Radiolucent lines in low-contact-stress mobile-bearing total knee arthroplasty: a blinded and matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-contact-stress (LCS) mobile-bearing total knee arthroplasty (TKA) (Johnson & Johnson, New Brunswick, NJ; previously: DePuy, Warsawa, USA) provides excellent functional results and wear rates in long-term follow-up analyses. Radiological analysis shows radiolucent lines (RLL) appearing immediately or two years after primary implantation, indicative of poor seat. Investigations proved RLL to be more frequent in uncemented TKA, resulting in a consensus to cement the tibial plateau, but their association with clinical findings and patients discomfort and knee pain is still unknown.</p> <p>Methods</p> <p>553 patients with 566 low-contact-stress (LCS) total knee prostheses were screened for continuous moderate knee pain. We compared tibial stress shielding classified by Ewald in patients suffering from pain with a matched, pain-free control group on blinded X-rays. We hypothesized a positive correlation between pain and radiolucency and higher frequency of such radiolucent lines in the most medial and most lateral zones of the tibial plateau.</p> <p>Results</p> <p>Twenty-eight patients suffered from knee pain in total. Radiolucencies were detected in 27 of these cases and in six out of 28 matched controls without knee pain. We could demonstrate a significant correlation of knee pain and radiolucencies, which appeared significantly more frequently in the outermost zones of the tibial plateau.</p> <p>Conclusion</p> <p>Our findings suggest that radiolucent lines, representing poor implant seat, about the tibial plateau are associated with knee pain in LCS patients. Radiolucencies are observed more often in noncemented LCS, and cementing the tibial plateau might improve implant seat and reduce both radiolucent lines and associated knee pain.</p
    corecore