1,164 research outputs found

    Risk based resilient network design

    Get PDF
    This paper presents a risk-based approach to resilient network design. The basic design problem considered is that given a working network and a fixed budget, how best to allocate the budget for deploying a survivability technique in different parts of the network based on managing the risk. The term risk measures two related quantities: the likelihood of failure or attack, and the amount of damage caused by the failure or attack. Various designs with different risk-based design objectives are considered, for example, minimizing the expected damage, minimizing the maximum damage, and minimizing a measure of the variability of damage that could occur in the network. A design methodology for the proposed risk-based survivable network design approach is presented within an optimization model framework. Numerical results and analysis illustrating the different risk based designs and the tradeoffs among the schemes are presented. © 2011 Springer Science+Business Media, LLC

    A time dependent performance model for multihop wireless networks with CBR traffic

    Get PDF
    In this paper, we develop a performance modeling technique for analyzing the time varying network layer queueing behavior of multihop wireless networks with constant bit rate traffic. Our approach is a hybrid of fluid flow queueing modeling and a time varying connectivity matrix. Network queues are modeled using fluid-flow based differential equation models which are solved using numerical methods, while node mobility is modeled using deterministic or stochastic modeling of adjacency matrix elements. Numerical and simulation experiments show that the new approach can provide reasonably accurate results with significant improvements in the computation time compared to standard simulation tools. © 2010 IEEE

    Concentration and size distribution data of silicon nitride nanoparticles measured using nanoparticle tracking analysis

    Get PDF
    This article refers to the paper “A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rates” (Lal et al., 2016) [1] and describes the concentration and size distribution data of silicon nitride nanoparticles measured using nanoparticle tracking analysis (NTA). A NanoSight LM10 instrument was used to capture the video data of silicon nitride nanoparticles moving under Brownian motion in the water. The video data was then analyzed using the NanoSight NTA software. This article also describes a methodology for calculating the percentage recovery of a nanoparticle isolation process

    A Novel Method for Isolation and Recovery of Ceramic Nanoparticles and Metal Wear Debris from Serum Lubricants at Ultra-low Wear Rates

    Get PDF
    Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process

    A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rates.

    Full text link
    UNLABELLED: Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. STATEMENT OF SIGNIFICANCE: Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature

    Biological Impact of Silicon Nitride for Orthopaedic Applications: Role of Particle Size, Surface Composition and Donor Variation

    Get PDF
    The adverse biological impact of orthopaedic wear debris currently limits the long-term safety of human joint replacement devices. We investigated the role of particle size, surface composition and donor variation in influencing the biological impact of silicon nitride as a bioceramic for orthopaedic applications. Silicon nitride particles were compared to the other commonly used orthopaedic biomaterials (e.g. cobalt-chromium and Ti-6Al-4V alloys). A novel biological evaluation platform was developed to simultaneously evaluate cytotoxicity, inflammatory cytokine release, oxidative stress, and genotoxicity potential of particles using peripheral blood mononuclear cells (PBMNCs) from individual human donors. Irrespective of the particle size, silicon nitride did not cause any adverse responses whereas cobalt-chromium wear particles caused donor-dependent cytotoxicity, TNF-α cytokine release, oxidative stress, and DNA damage in PBMNCs after 24 h. Despite being similar in size and morphology, silicon dioxide nanoparticles caused the release of significantly higher levels of TNF-α compared to silicon nitride nanoparticles, suggesting that surface composition influences the inflammatory response in PBMNCs. Ti-6Al-4V wear particles also released significantly elevated levels of TNF-α cytokine in one of the donors. This study demonstrated that silicon nitride is an attractive orthopaedic biomaterial due to its minimal biological impact on human PBMNCs

    Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Get PDF
    © 2018 Elsevier Ltd Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter–mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter–mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine – δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine–spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine–spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult–to–apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet–bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter–mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited

    Validation of a novel particle isolation procedure using particle doped tissue samples.

    Get PDF
    A novel particle isolation method for tissue samples was developed and tested using particle-doped peri-articular tissues from ovine cadavers. This enabled sensitivity of the isolation technique to be established by doping tissue samples of 0.25 g with very low particle volumes of 2.5 µm 3 per sample. Image analysis was used to verify that the method caused no changes to particle size or morphologies

    Time-varying performance analysis of multihop wireless networks with CBR traffic

    Get PDF
    In this paper, we develop a performance modeling technique for analyzing the time-varying network layer queuing behavior of multihop wireless networks with constant bit rate (CBR) traffic. Our approach is a hybrid of a time-varying adjacency matrix and a fluid flow queuing network model. The mobile network topology is modeled using a time-varying adjacency matrix, whereas node queues are modeled using fluid-flow-based differential equations that are solved using numerical methods. Numerical and simulation experiments show that this new approach can provide reasonably accurate results. Moreover, when compared with the computation time required in a standard discrete event simulator, the fluid-flow-based model is shown to be a more scalable tool. Finally, an illustrative example of our modeling technique application is given to show its capability of capturing the time-varying network performance as a function of traffic load, node mobility, and wireless link quality
    • …
    corecore