817 research outputs found
Reproducibility and validity of a diet quality index for children assessed using a FFQ
The diet quality index (DQI) for preschool children is a new index developed to reflect compliance with four main food-based dietary guidelines for preschool children in Flanders. The present study investigates: (1) the validity of this index by comparing DQI scores for preschool children with nutrient intakes, both of which were derived from 3d estimated diet records; (2) the reproducibility of the DQI for preschoolers based on a parentally reported forty-seven-item FFQ DQI, which was repeated after 5 weeks; (3) the relative validity of the FFQ DQI with 3d record DQI scores as reference. The study sample included 510 and 58 preschoolers (2-5-6.5 years) for validity and reproducibility analyses, respectively. Increasing 3d record DQI scores were associated with decreasing consumption of added sugars, and increasing intakes of fibre, water, Ca and many micronutrients. Mean FFQ DQI test-retest scores were not significantly different: 72 (so 11) v. 71 (Si) 10) (P-=0-218) out of a maximum of 100. Mean 3d record DQI score (66 (so 10)) was significantly lower than mean FFQ DQI (71 (so 10);
Crossover between ballistic and diffusive transport: The Quantum Exclusion Process
We study the evolution of a system of free fermions in one dimension under
the simultaneous effects of coherent tunneling and stochastic Markovian noise.
We identify a class of noise terms where a hierarchy of decoupled equations for
the correlation functions emerges. In the special case of incoherent,
nearest-neighbour hopping the equation for the two-point functions is solved
explicitly. The Green's function for the particle density is obtained
analytically and a timescale is identified where a crossover from ballistic to
diffusive behaviour takes place. The result can be interpreted as a competition
between the two types of conduction channels where diffusion dominates on large
timescales.Comment: 20 pages, 5 figure
The Schrodinger equation with Hulthen potential plus ring-shaped potential
We present the solutions of the Schrdinger equation with the
Hulthn potential plus ring-shape potential for states
within the framework of an exponential approximation of the centrifugal
potential.Solutions to the corresponding angular and radial equations are
obtained in terms of special functions using the conventional Nikiforov-Uvarov
method. The normalization constant for the Hulthn potential is also
computed.Comment: Typed with LateX,12 Pages, Typos correcte
Landau-Zener-St\"uckelberg interferometry in pair production from counterpropagating lasers
The rate of electron-positron pair production in linearly polarized
counter-propagating lasers is evaluated from a recently discovered solution of
the time-dependent Dirac equation. The latter is solved in momentum space where
it is formally equivalent to the Schr\"odinger equation describing a strongly
driven two-level system. The solution is found from a simple transformation of
the Dirac equation and is given in compact form in terms of the
doubly-confluent Heun's function. By using the analogy with the two-level
system, it is shown that for high-intensity lasers, pair production occurs
through periodic non-adiabatic transitions when the adiabatic energy gap is
minimal. These transitions give rise to an intricate interference pattern in
the pair spectrum, reminiscent of the Landau-Zener-St\"uckelberg phenomenon in
molecular physics: the accumulated phase result in constructive or destructive
interference. The adiabatic-impulse model is used to study this phenomenon and
shows an excellent agreement with the exact result.Comment: 22 pages, 7 figure
UCN Upscattering rates in a molecular deuterium crystal
A calculation of ultra-cold neutron (UCN) upscattering rates in molecular
deuterium solids has been carried out, taking into account intra-molecular
exictations and phonons. The different moelcular species ortho-D2 (with even
rotational quantum number J) and para-D2 (with odd J) exhibit significantly
different UCN-phonon annihilation cross-sections. Para- to ortho-D2 conversion,
furthermore, couples UCN to an energy bath of excited rotational states without
mediating phonons. This anomalous upscattering mechanism restricts the UCN
lifetime to 4.6 msec in a normal-D2 solid with 33% para content.Comment: 3 pages, one figur
Topological Phases in Graphitic Cones
The electronic structure of graphitic cones exhibits distinctive topological
features associated with the apical disclinations. Aharonov-Bohm
magnetoconductance oscillations (period Phi_0) are completely absent in rings
fabricated from cones with a single pentagonal disclination. Close to the apex,
the local density of states changes qualitatively, either developing a cusp
which drops to zero at the Fermi energy, or forming a region of nonzero density
across the Fermi energy, a local metalization of graphene.Comment: 4 pages, RevTeX 4, 3 PostScript figure
Quantum Chi-Squared and Goodness of Fit Testing
The density matrix in quantum mechanics parameterizes the statistical
properties of the system under observation, just like a classical probability
distribution does for classical systems. The expectation value of observables
cannot be measured directly, it can only be approximated by applying classical
statistical methods to the frequencies by which certain measurement outcomes
(clicks) are obtained. In this paper, we make a detailed study of the
statistical fluctuations obtained during an experiment in which a hypothesis is
tested, i.e. the hypothesis that a certain setup produces a given quantum
state. Although the classical and quantum problem are very much related to each
other, the quantum problem is much richer due to the additional optimization
over the measurement basis. Just as in the case of classical hypothesis
testing, the confidence in quantum hypothesis testing scales exponentially in
the number of copies. In this paper, we will argue 1) that the physically
relevant data of quantum experiments is only contained in the frequencies of
the measurement outcomes, and that the statistical fluctuations of the
experiment are essential, so that the correct formulation of the conclusions of
a quantum experiment should be given in terms of hypothesis tests, 2) that the
(classical) test for distinguishing two quantum states gives rise to
the quantum divergence when optimized over the measurement basis, 3)
present a max-min characterization for the optimal measurement basis for
quantum goodness of fit testing, find the quantum measurement which leads both
to the maximal Pitman and Bahadur efficiency, and determine the associated
divergence rates.Comment: 22 Pages, with a new section on parameter estimatio
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
- …
