35 research outputs found

    Floppy mitral valve/mitral valve prolapse syndrome: Beta-adrenergic receptor polymorphism may contribute to the pathogenesis of symptoms

    Get PDF
    AbstractBackgroundCertain patients with floppy mitral valve (FMV)/mitral valve prolapse (MVP) may have symptoms that cannot be explained on the severity of mitral valvular regurgitation (MVR) alone; hypersensitivity to adrenergic stimulation has been suggested in this group defined as the FMV/MVP syndrome.MethodsNinety-eight patients (75 men, 23 women) with mitral valve surgery for FMV/MVP were studied. Of those 41 (42%) had symptoms consistent with FMV/MVP syndrome [29 men (39%), 12 women (52%)]; median age of symptom onset was 30 years (range 10–63 years) and median duration of symptoms prior to valve surgery was 16 years (range 3–50 years). Ninety-nine individuals (70 men, 29 women) without clinical evidence of any disease were used as controls. Genotyping of β1 and β2 adrenergic receptors was performed.Resultsβ-Adrenergic receptor genotypes (β1 and β2) were similar between control and overall FMV/MVP patients. Subgroup analysis of patients, however, demonstrated that the genotype C/C at position 1165 resulting in 389 Arg/Arg of the β1 receptor was more frequent in women compared to those without FMV/MVP syndrome and to normal control women (p<0.025). This polymorphism may be related to hypersensitivity to adrenergic stimulation as reported previously in these patients.ConclusionThis study shows a large proportion of patients with FMV/MVP, predominantly women, had symptoms consistent with the FMV/MVP syndrome for many years prior to the development of significant MVR, and thus symptoms cannot be attributed to the severity of MVR alone. Further, women with FMV/MVP syndrome, symptoms at least partially may be related to β1-adrenergic receptor polymorphism, which has been shown previously to be associated with a hyperresponse to adrenergic stimulation

    Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCα subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure.</p> <p>Methods</p> <p>We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with <it>P </it>≤ 0.01 in one cohort and replication by <it>P </it>≤ 0.05 in the other cohort considered significant.</p> <p>Results</p> <p>In one cohort, a polymorphism in <it>DOT1L </it>(rs2269879) was strongly associated with greater systolic (<it>P </it>= 0.0002) and diastolic (<it>P </it>= 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in <it>MLLT3 </it>(rs12350051) and greater untreated systolic (<it>P </it>< 0.01 in both cohorts) and diastolic (<it>P </it>< 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed.</p> <p>Conclusions</p> <p>Our data suggest polymorphisms in <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>are not likely associated with blood pressure response to HCTZ. However, a possibility exists that rs2269879 in <it>DOT1L </it>could be associated with HCTZ response in Caucasians. Additionally, exploratory analyses suggest rs12350051 in <it>MLLT3 </it>may be associated with untreated blood pressure in African-Americans. Replication efforts are needed to verify roles for these polymorphisms in human blood pressure regulation.</p

    Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    Get PDF
    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p <2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups

    Loci influencing blood pressure identified using a cardiovascular gene-centric array

    Get PDF
    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.</p

    Pharmacogenomics of osteonecrosis of the jaw

    Get PDF
    Osteonecrosis of the jaw (ONJ) is a rare but serious drug induced adverse event, mainly associated with the use of antiresorptive medications, such as intravenous (IV) bisphosphonates (BPs) in cancer patients. In this review, we evaluated all the pharmacogenomic association studies for ONJ published up to December 2018. To date, two SNPs (CYP2C8 rs1934951 and RBMS3 rs17024608) were identified to be associated with ONJ by two genome-wide association studies (GWAS). However, all six subsequent candidate gene studies failed to replicate these results. In addition, six discovery candidate gene studies tried to identify the genetic markers in several genes associated with bone remodeling, bone mineral density, or osteoporosis. After evaluating the results of these 6 studies, none of the SNPs was significantly associated with ONJ. Recently, two whole-exome sequencing (WES) analysis (including one from our group) were performed to identify variants associated with ONJ. So far, only our study successfully replicated discovery result indicating SIRT1 SNP rs7896005 to be associated with ONJ. However, this SNP also did not reach genome-wide significance. The major limitations of these studies include lack of replication phases and limited sample sizes. Even though some studies had larger sample sizes, they recruited healthy individuals as controls, not subjects treated with BPs. We conclude that a GWAS with a larger sample size followed by replication phase will be needed to fully investigate the pharmacogenomic markers of ONJ

    Error analysis of TAS/MRC in Rayleigh fading channel with non-Gaussian noise

    No full text
    Transmit antenna selection with maximal ratio combining at the receiver (TAS/MRC) is a promising technique that can be used to avoid the hardware complexity of multiple input multiple output (MIMO) system without jeopardizing the diversity gain. The generalized Gaussian distribution (GGD) is used to model different kinds of additive noise including Gaussian, Laplacian, uniform, and impulsive. In this paper, we study the bit error performance of TAS/MRC system assuming flat Rayleigh fading channels perturbed by additive white generalized Gaussian noise (AWGGN). To this end, we provide a closed form expression for the average bit error rate of coherent modulation techniques in terms of Mejier’s G function that is readily available in many commercial mathematical software packages like MATLAB and Mathematica. Moreover, we study the asymptotic behavior of the BER at high signal to noise ratio (SNR). Analytical results are verified by simulation

    Performance analysis of fisher-snedecor F composite fading channels

    No full text
    In this paper, we consider the Fisher-Snedecor F composite fading channel model and derive exact closed-form expressions for the symbol error rate (SER) of M-ary pulse amplitude modulation (M-PAM) and M-ary quadrature amplitude modulation (M-QAM). We also derive asymptotic expressions for the SER of M-PAM and M-QAM to study the behavior of SER at high values of signal-to-noise ratio. Moreover, we derive an exact closed-form expression for the average capacity. The derived expressions are evaluated for different values of the fading parameters to show the effects of shadowing and small-scale fading on the performance of SER and capacity. Simulation results are also provided to show the accuracy of the derived expressions
    corecore