2,566 research outputs found

    Solution of Orthopositronium lifetime Puzzle

    Full text link
    The intrinsic decay rate of orthopositronium formed in SiO2{\rm SiO_2} powder is measured using the direct 2γ2\gamma correction method such that the time dependence of the pick-off annihilation rate is precisely determined. The decay rate of orthopositronium is found to be 7.0396±0.0012(stat.)±0.0011(sys.)μs17.0396\pm0.0012 (stat.)\pm0.0011 (sys.)\mu s^{-1}, which is consistent with our previous measurements with about twice the accuracy. Results agree well with the O(α2)O(\alpha^2) QED prediction, and also with a result reported very recently using nanoporous film

    Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals

    Get PDF
    Infective endocarditis (IE) can be diagnosed in the clinical microbiology laboratory by culturing explanted heart valve material. We present a service evaluation that examines the sensitivity and specificity of a broad-range 16S rDNA polymerase chain reaction (PCR) assay for the detection of the causative microbe in culture-proven and culture-negative cases of IE. A clinical case-note review was performed for 151 patients, from eight UK and Ireland hospitals, whose endocardial specimens were referred to the Microbiology Laboratory at Great Ormond Street Hospital (GOSH) for broad-range 16S rDNA PCR over a 12-year period. PCR detects the causative microbe in 35/47 cases of culture-proven IE and provides an aetiological agent in 43/69 cases of culture-negative IE. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the 16S rDNA PCR assay were calculated for this series of selected samples using the clinical diagnosis of IE as the reference standard. The values obtained are as follows: sensitivity = 67 %, specificity = 91 %, PPV = 96 % and NPV = 46 %. A wide range of organisms are detected by PCR, with Streptococcus spp. detected most frequently and a relatively large number of cases of Bartonella spp. and Tropheryma whipplei IE. PCR testing of explanted heart valves is recommended in addition to culture techniques to increase diagnostic yield. The data describing the aetiological agents in a large UK and Ireland series of culture-negative IE will allow future development of the diagnostic algorithm to include real-time PCR assays targeted at specific organisms

    Electric Field Tunable Ultrafast Interlayer Charge Transfer in Graphene/WS<sub>2</sub> Heterostructure

    Get PDF
    Van der Waals heterostructures composed of two-dimensional materials offer an unprecedented control over their properties and have attracted tremendous research interest in various optoelectronic applications. Here, we study the photoinduced charge transfer in graphene/WS2 heterostructure by time-dependent density functional theory molecular dynamics. Our results show that holes transfer from graphene to WS2 two times faster than electrons, and the occurrence of interlayer charge transfer is found correlated with vibrational modes of graphene and WS2. It is further demonstrated that the carrier dynamics can be efficiently modulated by external electric fields. Detailed analysis confirms that the carrier transfer rate at heterointerface is governed by the coupling between donor and acceptor states, which is the result of the competition between interlayer and intralayer relaxation processes. Our study provides insights into the understanding of ultrafast interlayer charge transfer processes in heterostructures and broadens their future applications in photovoltaic devices

    Mass enhancement in narrow band systems

    Full text link
    A perturbative study of the Holstein Molecular Crystal Model which accounts for lattice structure and dimensionality effects is presented. Antiadiabatic conditions peculiar of narrow band materials and an intermediate to strong electron-phonon coupling are assumed. The polaron effective mass depends crucially in all dimensions on the intermolecular coupling strengths which also affect the size of the lattice deformation associated with the small polaron formation.Comment: Istituto Nazionale di Fisica della Materia - Dipartimento di Matematica e Fisica, Istituto Nazionale di Fisica della Materia Universita' di Camerino, 62032 Camerino, Ital

    Elasticity-driven Nanoscale Texturing in Complex Electronic Materials

    Get PDF
    Finescale probes of many complex electronic materials have revealed a non-uniform nanoworld of sign-varying textures in strain, charge and magnetization, forming meandering ribbons, stripe segments or droplets. We introduce and simulate a Ginzburg-Landau model for a structural transition, with strains coupling to charge and magnetization. Charge doping acts as a local stress that deforms surrounding unit cells without generating defects. This seemingly innocuous constraint of elastic `compatibility', in fact induces crucial anisotropic long-range forces of unit-cell discrete symmetry, that interweave opposite-sign competing strains to produce polaronic elasto-magnetic textures in the composite variables. Simulations with random local doping below the solid-solid transformation temperature reveal rich multiscale texturing from induced elastic fields: nanoscale phase separation, mesoscale intrinsic inhomogeneities, textural cross-coupling to external stress and magnetic field, and temperature-dependent percolation. We describe how this composite textured polaron concept can be valuable for doped manganites, cuprates and other complex electronic materials.Comment: Preprin

    Hubble Space Telescope and Ground-Based Optical and Ultraviolet Observations of GRB010222

    Get PDF
    We report on Hubble Space Telescope WFPC2 optical and STIS near ultraviolet MAMA observations, and ground-based optical observations of GRB010222, spanning 15 hrs to 71 days. The observations are well-described by a relativistic blast-wave model with a hard electron-energy distribution, p = 1.57, and a jet transition at t_j=0.93 days. These values are slightly larger than previously found as a result of a correction for the contribution from the host galaxy to the late-time ground-based observations and the larger temporal baseline provided by the Hubble Space Telescope observations. The host galaxy is found to contain a very compact core (size <0.25 arcsec) which coincides with the position of the optical transient. The STIS near ultraviolet MAMA observations allow for an investigation of the extinction properties along the line of sight to GRB010222. We find that the far ultraviolet curvature component (c_4) is rather large. In combination with the low optical extinction A_V =0.11 mag, when compared to the Hydrogen column inferred from X-ray observations, we suggest that this is evidence for dust destruction.Comment: ApJ, in pres

    Supernova 2012ec: Identification of the progenitor and early monitoring with PESSTO

    Get PDF
    We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion HST WFPC2 and ACS/WFC F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M(r')=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Halpha absorption minimum of -11,700 km/s (at 1 day post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (<6d). We derive a luminosity for the progenitor, in comparison with MARCS model SEDs, of log L/Lsun = 5.15+/-0.19, from which we infer an initial mass range of 14-22Msun. This is the first SN with an identified progenitor to be followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).Comment: 6 pages, 3 figures, MNRAS accepte

    Cellular response to micropatterned growth promoting and inhibitory substrates

    Get PDF
    BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue
    corecore