38,663 research outputs found

    Higher and missing resonances in omega photoproduction

    Full text link
    We study the role of the nucleon resonances (NN^*) in ω\omega photoproduction by using the quark model resonance parameters predicted by Capstick and Roberts. The employed γNN\gamma N \to N^* and NωNN^* \to \omega N amplitudes include the configuration mixing effects due to the residual quark-quark interactions. The contributions from the nucleon resonances are found to be important in the differential cross sections at large scattering angles and various spin observables. In particular, the parity asymmetry and beam-target double asymmetry at forward scattering angles are suggested for a crucial test of our predictions. The dominant contributions are found to be from N32+(1910)N\frac32^+ (1910), a missing resonance, and N32(1960)N\frac32^- (1960) which is identified as the D13(2080)D_{13}(2080) of the Particle Data Group.Comment: 8 pages, LaTeX with ws-p8-50x6-00.cls, 4 figures (5 eps files), Talk presented at the NSTAR2001 Workshop on the Physics of Excited Nucleons, Mainz, Germany, Mar. 7-10, 200

    Electromagnetic production of vector mesons at low energies

    Get PDF
    We have investigated exclusive photoproduction of light vector mesons (ω\omega, ρ\rho and ϕ\phi) on the nucleon at low energies. In order to explore the questions concerning the so-called missing nucleon resonances, we first establish the predictions from a model based on the Pomeron and meson exchange mechanisms. We have also explored the contributions due to the mechanisms involving ss- and uu-channel intermediate nucleon state. Some discrepancies found at the energies near threshold and large scattering angles suggest a possibility of using this reaction to identify the nucleon resonances.Comment: 9 pages, LaTeX with sprocl.sty, 5 figures (11 eps files), Talk presented at the NSTAR2000 Workshop, The Physics of Excited Nucleons, Jefferson Lab., Newport News, Feb. 16-19, 200

    Charmonium-Nucleon Dissociation Cross Sections in the Quark Model

    Full text link
    Charmonium dissociation cross sections due to flavor-exchange charmonium-baryon scattering are computed in the constituent quark model. We present results for inelastic J/ψNJ/\psi N and ηcN\eta_c N scattering amplitudes and cross sections into 46 final channels, including final states composed of various combinations of DD, DD^*, Σc\Sigma_c, and Λc\Lambda_c. These results are relevant to experimental searches for the deconfined phase of quark matter, and may be useful in identifying the contribution of initial ccˉc\bar c production to the open-charm final states observed at RHIC through the characteristic flavor ratios of certain channels. These results are also of interest to possible charmonium-nucleon bound states.Comment: 10 pages, 5 eps figures, revte

    On the sign of the pi-rho-omega coupling constant

    Full text link
    It is shown that the relative sign between the NNωNN\omega and πρω\pi\rho\omega coupling constants can be determined most sensitively from ω\omega production processes in NNNN collisions. Recent data on these reactions clearly favor the sign of the πρω\pi\rho\omega coupling constant which is opposite to that inferred from studies of the photoproduction reaction in combination with the vector meson dominance assumption and used by many authors. Implication of this finding in the description of other reactions is discussed.Comment: 6 pages, 4 figures, REVTeX, to be published in Phys. Lett.

    Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term

    Get PDF
    We consider higher derivative CP(N) model in 2+1 dimensions with the Wess-Zumino-Witten term and the topological current density squared term. We quantize the theory by using the auxiliary gauge field formulation in the path integral method and prove that the extended model remains renormalizable in the large N limit. We find that the Maxwell-Chern-Simons theory is dynamically induced in the large N effective action at a nontrivial UV fixed point. The quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the quantization of the Chern-Simons term whose coefficient is also corrected, and some references are added. Some typos are corrected. Added a new paragraph checking the equivalence between (3) and (5), and a related referenc

    Charmonium-hadron interactions from QCD

    Get PDF
    The heavy quark system is an excellent probe to learn about the QCD dynamics at finite density. First, we discuss the properties of the J/ψJ/\psi and DD meson at finite nucleon density. We discuss why their properties should change at finite density and then introduce an exact QCD relation among these hadron properties and the energy momentum tensor of the medium. Second, we discuss attempts to calculate charmonium-hadron total cross section using effective hadronic models and perturbative QCD. We emphasize a recent calculation, where the cross section is derived using QCD factorization theorem. We conclude by discussing some challenges for SIS 200.Comment: 8 pages, Presented at 6th International Conference on Strange Quarks in Matter: 2001: A Flavorspace Odyssey (SQM2001), Frankfurt, Germany, 25-29 Sep 2001, submitted to J. Phys.

    Isospin particle on S2S^{2} with arbitrary number of supersymmetries

    Get PDF
    We study the supersymmetric quantum mechanics of an isospin particle in the background of spherically symmetric Yang-Mills gauge field. We show that on S2S^{2} the number of supersymmetries can be made arbitrarily large for a specific choice of the spherically symmetric SU(2) gauge field. However, the symmetry algebra containing the supercharges becomes nonlinear if the number of fermions is greater than two. We present the exact energy spectra and eigenfunctions, which can be written as the product of monopole harmonics and a certain isospin state. We also find that the supersymmetry is spontaneously broken if the number of supersymmetries is even.Comment: 6 page

    Epitaxial aluminium-nitride tunnel barriers grown by nitridation with a plasma source

    Full text link
    High critical current-density (10 to 420 kA/cm^2) superconductor-insulator-superconductor tunnel junctions with aluminium nitride barriers have been realized using a remote nitrogen plasma from an inductively coupled plasma source operated in a pressure range of 10^{-3} to 10^{-1} mbar. We find a much better reproducibility and control compared to previous work. From the current-voltage characteristics and cross-sectional TEM images it is inferred that, compared to the commonly used AlO_x barriers, the poly-crystalline AlN barriers are much more uniform in transmissivity, leading to a better quality at high critical current-densities.Comment: 3 pages, 3 figures, accepted for publication in AP
    corecore