44,981 research outputs found

    Scheme Independence to all Loops

    Full text link
    The immense freedom in the construction of Exact Renormalization Groups means that the many non-universal details of the formalism need never be exactly specified, instead satisfying only general constraints. In the context of a manifestly gauge invariant Exact Renormalization Group for SU(N) Yang-Mills, we outline a proof that, to all orders in perturbation theory, all explicit dependence of beta function coefficients on both the seed action and details of the covariantization cancels out. Further, we speculate that, within the infinite number of renormalization schemes implicit within our approach, the perturbative beta function depends only on the universal details of the setup, to all orders.Comment: 18 pages, 8 figures; Proceedings of Renormalization Group 2005, Helsinki, Finland, 30th August - 3 September 2005. v2: Published in jphysa; minor changes / refinements; refs. adde

    Sensitivity of Nonrenormalizable Trajectories to the Bare Scale

    Get PDF
    Working in scalar field theory, we consider RG trajectories which correspond to nonrenormalizable theories, in the Wilsonian sense. An interesting question to ask of such trajectories is, given some fixed starting point in parameter space, how the effective action at the effective scale, Lambda, changes as the bare scale (and hence the duration of the flow down to Lambda) is changed. When the effective action satisfies Polchinski's version of the Exact Renormalization Group equation, we prove, directly from the path integral, that the dependence of the effective action on the bare scale, keeping the interaction part of the bare action fixed, is given by an equation of the same form as the Polchinski equation but with a kernel of the opposite sign. We then investigate whether similar equations exist for various generalizations of the Polchinski equation. Using nonperturbative, diagrammatic arguments we find that an action can always be constructed which satisfies the Polchinski-like equation under variation of the bare scale. For the family of flow equations in which the field is renormalized, but the blocking functional is the simplest allowed, this action is essentially identified with the effective action at Lambda = 0. This does not seem to hold for more elaborate generalizations.Comment: v1: 23 pages, 5 figures, v2: intro extended, refs added, published in jphy

    Excitation of the molecular gas in the nuclear region of M82

    Get PDF
    We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six ^(12)CO lines, 2 ^(13)CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 10^(3.5) cm^(-3)) clouds, with column densities of N_H = 10^(21.5) cm^(-2) and a relatively low UV radiation field (G_0 = 10^2). The remaining gas is predominantly found in clouds with higher densities (n = 10^5 cm^(-3)) and radiation fields (G_0 = 10^(2.75)), but somewhat lower column densities (N_H = 10^(21.2) cm^(-2)). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 10^6 cm^(-3)) and UV field (G_0 = 10^(3.25)). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies

    Which diagnostic tests are most useful in a chest pain unit protocol?

    Get PDF
    Background The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol were most diagnostically and prognostically useful. Methods The Northern General Hospital CPU uses 2–6 hours of serial ECG / ST segment monitoring, CK-MB(mass) on arrival and at least two hours later, troponin T at least six hours after worst pain and exercise treadmill testing. Data were prospectively collected over an eighteen-month period from patients managed on the CPU. Patients discharged after CPU assessment were invited to attend a follow-up appointment 72 hours later for ECG and troponin T measurement. Hospital records of all patients were reviewed to identify adverse cardiac events over the subsequent six months. Diagnostic accuracy of each test was estimated by calculating sensitivity and specificity for: 1) acute coronary syndrome (ACS) with clinical myocardial infarction and 2) ACS with myocyte necrosis. Prognostic value was estimated by calculating the relative risk of an adverse cardiac event following a positive result. Results Of the 706 patients, 30 (4.2%) were diagnosed as ACS with myocardial infarction, 30 (4.2%) as ACS with myocyte necrosis, and 32 (4.5%) suffered an adverse cardiac event. Sensitivities for ACS with myocardial infarction and myocyte necrosis respectively were: serial ECG / ST segment monitoring 33% and 23%; CK-MB(mass) 96% and 63%; troponin T (using 0.03 ng/ml threshold) 96% and 90%. The only test that added useful prognostic information was exercise treadmill testing (relative risk 6 for cardiac death, non-fatal myocardial infarction or arrhythmia over six months). Conclusion Serial ECG / ST monitoring, as used in our protocol, adds little diagnostic or prognostic value in patients with a normal or non-diagnostic initial ECG. CK-MB(mass) can rule out ACS with clinical myocardial infarction but not myocyte necrosis(defined as a troponin elevation without myocardial infarction). Using a low threshold for positivity for troponin T improves sensitivity of this test for myocardial infarction and myocardial necrosis. Exercise treadmill testing predicts subsequent adverse cardiac events

    The Near-Infrared Broad Emission Line Region of Active Galactic Nuclei -- I. The Observations

    Full text link
    We present high quality (high signal-to-noise ratio and moderate spectral resolution) near-infrared (near-IR) spectroscopic observations of 23 well-known broad-emission line active galactic nuclei (AGN). Additionally, we obtained simultaneous (within two months) optical spectroscopy of similar quality. The near-IR broad emission line spectrum of AGN is dominated by permitted transitions of hydrogen, helium, oxygen, and calcium, and by the rich spectrum of singly-ionized iron. In this paper we present the spectra, line identifications and measurements, and address briefly some of the important issues regarding the physics of AGN broad emission line regions. In particular, we investigate the excitation mechanism of neutral oxygen and confront for the first time theoretical predictions of the near-IR iron emission spectrum with observations.Comment: 45 pages, 17 figures, accepted by ApJ

    Conformal anomaly from gauge fields without gauge fixing

    Get PDF
    We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the gauge at any stage. Regularisation is provided by covariant higher derivatives and by embedding the Maxwell field into a spontaneously broken U(11)U(1|1) supergauge theory. We first provide a realisation that leaves behind two versions of the original U(1)U(1) gauge field, and then construct a manifestly U(11)U(1|1) supergauge invariant flow equation which leaves behind only the original Maxwell field in the spontaneously broken regime.Comment: 24 page
    corecore