37 research outputs found

    Valorisation of sawdust through the combined microwave-assisted hydrothermal pre-treatment and fermentation using an oleaginous yeast

    Get PDF
    Oleaginous yeast, cultured on second-generation lignocellulosic resources, has the potential to be a key part of the future energy sector. However, the multiple unit operations necessary to produce concentrated hydrolysates, with a minimum of fermentation inhibitors, limit the applicability to date. In this study, a simple microwave-assisted hydrothermal pre-treatment step of oak or beech sawdust was deployed to produce an oligosaccharide-rich hydrolysate. This was then catabolised by the oleaginous yeast, Metschnikowia pulcherrima, avoiding the need for costly enzymatic or further chemical steps in the processing. Up to 85% of the sawdust’s hemicelluloses could be solubilised under these conditions, and 8 g/L DCW yeast with a 42% lipid content produced. While a number of studies have demonstrated that oleaginous yeasts possess high inhibitor tolerance, using this real lignocellulosic hydrolysate, we demonstrate that lipid production is actually very sensitive to inhibitor and carbon availability, and the optimal system is not the one that gives the highest hydrolysate or cell biomass. Indeed, the yeast was shown to detoxify the inhibitors in the process, but at high inhibitor loading, this leads to very poor lipid production, especially at high furfural levels. These findings clearly highlight the importance of considering multiple variables when real, complex lignocellulosic media are involved, tuning process conditions based on the desired fermentation outcomes

    Influence of various acids on the physico-mechanical properties of pozzolanic cement mortars

    No full text
    Acidic attack represents a topic of increasing significance, owing to the spread of damages of concrete structures in both urban and industrial areas. Cement type is an important factor affecting performance of cement based materials in an aggressive environment. The goal of this study was to compare the acid resistance of a pozzolanic cement (CEM IV-A/32.5) with Portland cement (CEM 132.5) that was made from the same clinker. For this purpose, 50 mm mortar cubes were prepared with two different kinds of cement according to TS EN 196-1. After 28 days of hardening, the samples were immersed into four different concentrations of hydrochloric, nitric and sulfuric acid solutions for a period of 120 days. The changes in weight loss and compressive strength values for each acid solution within the test period were recorded. The acid resistance of mortars made from Portland cement was better than the pozzolanic cement incorporated samples after 120 days of acid attack
    corecore