7 research outputs found
Chemistry in Times of Artificial Intelligence
Chemists have to a large extent gained their knowledge by doing experiments and thus gather data. By putting various data together and then analyzing them, chemists have fostered their understanding of chemistry. Since the 1960s, computer methods have been developed to perform this process from data to information to knowledge. Simultaneously, methods were developed for assisting chemists in solving their fundamental questions such as the prediction of chemical, physical, or biological properties, the design of organic syntheses, and the elucidation of the structure of molecules. This eventually led to a discipline of its own: chemoinformatics. Chemoinformatics has found important applications in the fields of drug discovery, analytical chemistry, organic chemistry, agrichemical research, food science, regulatory science, material science, and process control. From its inception, chemoinformatics has utilized methods from artificial intelligence, an approach that has recently gained more momentum
Expanding the medicinal chemistry synthetic toolbox
The key objectives of medicinal chemistry are to efficiently design and synthesize bioactive compounds that have the potential to become safe and efficacious drugs. Most medicinal chemistry programmes rely on screening compound collections populated by a range of molecules derived from a set of known and robust chemistry reactions. Analysis of the role of synthetic organic chemistry in subsequent hit and lead optimization efforts suggests that only a few reactions dominate. Thus, the uptake of new synthetic methodologies in drug discovery is limited. Starting from the known limitations of reaction parameters, synthesis design tools, synthetic strategies and innovative chemistries, here we highlight opportunities for the expansion of the medicinal chemists’ synthetic toolbox. More intense crosstalk between synthetic and medicinal chemists in industry and academia should enable enhanced impact of new methodologies in future drug discovery. © 2018 Springer Nature Limited. All rights reserved