882 research outputs found
Whispering Gallery States of Antihydrogen
We study theoretically interference of the long-living quasistationary
quantum states of antihydrogen atoms, localized near a concave material
surface. Such states are an antimatter analog of the whispering gallery states
of neutrons and matter atoms, and similar to the whispering gallery modes of
sound and electro-magnetic waves. Quantum states of antihydrogen are formed by
the combined effect of quantum reflection from van der Waals/Casimir-Polder
(vdW/CP) potential of the surface and the centrifugal potential. We point out a
method for precision studies of quantum reflection of antiatoms from vdW/CP
potential; this method uses interference of the whispering gallery states of
antihydrogen.Comment: 13 pages 7 figure
Substrate effects on surface magetetism of Fe/W(110) from first principles
Surface magnetic properties of the pseudomorphic Fe(110) monolayer on a
W(110) substrate are investigated from first principles as a function of the
substrate thickness (up to eight layers). Analyzing the magnetocrystalline
anisotropy energies, we find stable (with respect to the number of substrate
layers) in-plane easy and hard axes of magnetization along the [1[overline 1]0]
and [001] directions, respectively, reaching a value in good agreement with
experiment for thick substrates. Additionally, the changes to the magnetic spin
moments and the density of the Fe d states are analyzed with respect to the
number of substrate layers as well as with respect to the direction of
magnetization. With respect to the number of W(110) substrate layers beneath
the Fe(110) surface, we find that the first four substrate layers have a large
influence on the electronic and magnetic properties of the surface. Beyond the
fourth layer, the substrate has only marginal influence on the surface
properties.Comment: 8 Pages, 3 Figures, 3 Table
A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB)
The Mersey Estuary : sediment geochemistry
This report describes a study of the geochemistry of
the Mersey estuary carried out between April 2000 and
December 2002. The study was the first in a new programme
of surveys of the geochemistry of major British estuaries
aimed at enhancing our knowledge and understanding of the
distribution of contaminants in estuarine sediments.
The report first summarises the physical setting, historical
development, geology, hydrography and bathymetry of the
Mersey estuary and its catchment. Details of the sampling
and analytical programmes are then given followed by a
discussion of the sedimentology and geochemistry. The
chemistry of the water column and suspended particulate
matter have not been studied, the chief concern being with
the geochemistry of the surface and near-surface sediments
of the Mersey estuary and an examination of their likely
sources and present state of contamination
Charge Fluctuation Forces Between Stiff Polyelectrolytes in Salt Solution: Pairwise Summability Re-examined
We formulate low-frequency charge-fluctuation forces between charged
cylinders - parallel or skewed - in salt solution: forces from dipolar van der
Waals fluctuations and those from the correlated monopolar fluctuations of
mobile ions. At high salt concentrations forces are exponentially screened. In
low-salt solutions dipolar energies go as or ; monopolar
energies vary as or , where is the minimal separation
between cylinders. However, pairwise summability of rod-rod forces is easily
violated in low-salt conditions. Perhaps the most important result is not the
derivation of pair potentials but rather the demonstration that some of these
expressions may not be used for the very problems that originally motivated
their derivation.Comment: 8 pages and 1 fig in ps forma
Growth in densely populated Asia: implications for primary product exporters
Economic growth and integration in Asia is rapidly increasing the global economic importance of the region. To the extent that this growth continues and is strongest in natural resource-poor Asian economies, it will add to global demand for imports of primary products, to the benefit of (especially nearby) resource-abundant countries. How will global production, consumption and trade patterns change by 2030 in the course of such economic developments and structural changes? We address this question using the GTAP model and Version 8.1 of the 2007 GTAP database, together with supplementary data from a range of sources, to support projections of the global economy from 2007 to 2030 under various scenarios. Factor endowments and real gross domestic product are assumed to grow at exogenous rates, and trade-related policies are kept unchanged to generate a core baseline, which is compared with an alternative slower growth scenario. We also consider the impact of several policy changes aimed at increasing China's agricultural self-sufficiency relative to the 2030 baseline. Policy implications for countries of the Asia-Pacific region are drawn out in the final section
Gaussian random waves in elastic media
Similar to the Berry conjecture of quantum chaos we consider elastic analogue
which incorporates longitudinal and transverse elastic displacements with
corresponding wave vectors. Based on that we derive the correlation functions
for amplitudes and intensities of elastic displacements. Comparison to numerics
in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure
The bends on a quantum waveguide and cross-products of Bessel functions
A detailed analysis of the wave-mode structure in a bend and its
incorporation into a stable algorithm for calculation of the scattering matrix
of the bend is presented. The calculations are based on the modal approach. The
stability and precision of the algorithm is numerically and analytically
analysed. The algorithm enables precise numerical calculations of scattering
across the bend. The reflection is a purely quantum phenomenon and is discussed
in more detail over a larger energy interval. The behaviour of the reflection
is explained partially by a one-dimensional scattering model and heuristic
calculations of the scattering matrix for narrow bends. In the same spirit we
explain the numerical results for the Wigner-Smith delay time in the bend.Comment: 34 pages, 21 figure
Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers
For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure
- …
