371 research outputs found
Interfaces and Grain Boundaries of Lamellar Phases
Interfaces between lamellar and disordered phases, and grain boundaries
within lamellar phases, are investigated employing a simple Landau free energy
functional. The former are examined using analytic, approximate methods in the
weak segregation limit, leading to density profiles which can extend over many
wavelengths of the lamellar phase. The latter are studied numerically and
exactly. We find a change from smooth chevron configurations typical of small
tilt angles to distorted omega configurations at large tilt angles in agreement
with experiment.Comment: 9 pages, 6 figures 9 pages, 6 figure
A synoptic-scale overview of the TOGA COARE intensive observing period November 1992 to February 1993 based on analyses from US operational global data assimilation systems
The operational global analyses from the two major U.S. numerical weather prediction centers, the Navy's Fleet Numerical Oceanography Center and the National Meteorological Center, are used to describe the synoptic-scale features of the 1 Nov. 1992 to 28 Feb. 1993 TOGA COARE intensive observing period (IOP). TOGA COARE is an international field experiment in which a large number of research scientists from the Goddard Laboratory for Atmospheres (Code 910) and the Laboratory for Hydrospheres (Code 970) participated. Two high-amplitude intraseasonal (30-60 day) oscillations passed through the TOGA COARE observational network located in the equatorial western Pacific. Associated with the oscillations were two 6-10 day periods of persistent westerly surface winds at the equator or 'westerly wind bursts.' These events are depicted through time series and time-longitude cross sections of divergence/velocity potential, surface winds, precipitation, ocean mixed-layer depth, and sea surface temperature. The high and low frequency components of the flow in which the intraseasonal oscillations were embedded are shown using seasonal, monthly, and 5-day averages of the surface, 850 and 200 mb winds, precipitation, and sea-level pressure, and a time-longitude cross section of tropical cyclone activity. Independent verification of precipitation comes from near real-time satellite estimates, and a reference climatology is given based on 9 years of ECMWF analyses. Daily 00 UTC analyses of surface winds and sea-level pressure for the entire western Pacific and Indian Ocean are provided to trace the evolution of individual synoptic events
Interfaces of Modulated Phases
Numerically minimizing a continuous free-energy functional which yields
several modulated phases, we obtain the order-parameter profiles and
interfacial free energies of symmetric and non-symmetric tilt boundaries within
the lamellar phase, and of interfaces between coexisting lamellar, hexagonal,
and disordered phases. Our findings agree well with chevron, omega, and
T-junction tilt-boundary morphologies observed in diblock copolymers and
magnetic garnet films.Comment: 4 page
Boundary Effects in Chiral Polymer Hexatics
Boundary effects in liquid-crystalline phases can be large due to long-ranged
orientational correlations. We show that the chiral hexatic phase can be locked
into an apparent three-dimensional N+6 phase via such effects. Simple numerical
estimates suggest that the recently discovered "polymer hexatic" may actually
be this locked phase.Comment: 4 pages, RevTex, 3 included eps figure
A twist in chiral interaction between biological helices
Using an exact solution for the pair interaction potential, we show that
long, rigid, chiral molecules with helical surface charge patterns have a
preferential interaxial angle ~((RH)^1/2)/L, where L is the length of the
molecules, R is the closest distance between their axes, and H is the helical
pitch. Estimates based on this formula suggest a solution for the puzzle of
small interaxial angles in a-helix bundles and in cholesteric phases of DNA.Comment: 7 pages, 2 figures, PDF file onl
Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size
We identify a class of composite membranes: fluid bilayers coupled to an
elastic meshwork, that are such that the meshwork's energy is a function
\textit{not} of the real microscopic membrane area ,
but of a \textit{smoothed} membrane's area , which corresponds to the
area of the membrane coarse-grained at the mesh size . We show that the
meshwork modifies the membrane tension both below and above the scale
, inducing a tension-jump . The
predictions of our model account for the fluctuation spectrum of red blood
cells membranes coupled to their cytoskeleton. Our results indicate that the
cytoskeleton might be under extensional stress, which would provide a means to
regulate available membrane area. We also predict an observable tension jump
for membranes decorated with polymer "brushes"
- …